HihoCoder 1424 Asa's Chess Problem

一开始搜上下界没有见到费用流,就以为考不到,没有学。今天接着碰到了。。。
其实跟有源汇上下界最大流差不多。也是带了一些有花费的边。
对于这个题,一开始也没分析好。对于每行和每列的点,跟s相连的是已经有的黑子的数目,这是必须流的,也就是下界,上界很明显就是相同的。
然后跟e相连的是题目要求的上下界流量。然后交换怎么体现呢?题目中很亲民的给出每一对点要么行相同,要么列相同,很明显行相同,只会对列有影响,反之,只会对行有影响,那么我们就加上这样的一条边,对于不同的行或列连边,花费为1,下界0,上界1。

#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 3000+5;
const int inf = 1e9;
typedef long long LL;
int n;
int sr[52],sc[52];
int f[MAXN];

int cnt,head[MAXN];

int max_flow,min_cost,sum_flow;
struct node
{
    int u,v,w,f,next;
} edge[100000];

void init()
{
    cnt = 0;
    memset(head,-1,sizeof head);
    memset(f,0,sizeof f);
    memset(sr,0,sizeof sr);
    memset(sc,0,sizeof sc);
}

void add(int u,int v,int w,int f)
{
    edge[cnt].u = u;
    edge[cnt].v = v;
    edge[cnt].w = w;
    edge[cnt].f = f;
    edge[cnt].next = head[u];
    head[u] = cnt++;
    edge[cnt].u = v;
    edge[cnt].v = u;
    edge[cnt].w = -w;
    edge[cnt].f = 0;
    edge[cnt].next = head[v];
    head[v] = cnt++;
}

void Add(int u,int v,int w,int fl,int fh)
{
    f[u] -= fl;
    f[v] += fl;
    add(u,v,w,fh-fl);
}

bool vis[MAXN];
int dis[MAXN],pre[MAXN];
bool spfa(int s,int e)
{
    for(int i = 0; i <= e; ++i)
    {
        dis[i] = inf;
        pre[i] = -1;
    }
    queue<int>q;
    q.push(s);
    dis[s] = 0;
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = 0;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].v;
            int w = edge[i].w;
            int f = edge[i].f;
            if(f > 0 && dis[v] > dis[u] + w)
            {
                dis[v] = dis[u] + w;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = 1;
                    q.push(v);
                }
            }
        }
    }
    if(pre[e] == -1)return 0;
    return 1;
}
void get_mincost(int s,int e)
{
    max_flow = 0,min_cost = 0;
    while(spfa(s,e))
    {
        int p = pre[e];
        int flow = inf;
        while(p != -1)
        {
            flow = min(flow,edge[p].f);
            p = pre[edge[p].u];
        }
        max_flow += flow;
        min_cost += flow*dis[e];
        p = pre[e];
        while(p != -1)
        {
            edge[p].f -= flow;
            edge[p^1].f += flow;
            p = pre[edge[p].u];
        }
    }
    if(max_flow == sum_flow)printf("%d\n",min_cost);
    else puts("-1");
}

int tu[52][52];

int main()
{
    while(~scanf("%d",&n))
    {
        init();
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j)
            {
                scanf("%d",&tu[i][j]);
                if(tu[i][j])sr[i]++,sc[j]++;
            }
        int s = 0,e = 2*n+1;
        for(int i = 1; i <= n; ++i)Add(s,i,0,sr[i],sr[i]);
        for(int i = 1; i <= n; ++i)Add(s,i+n,0,sc[i],sc[i]);
        int l,r;
        for(int i = 1; i <= n; ++i)
        {
            scanf("%d%d",&l,&r);
            Add(i,e,0,l,r);
        }
        for(int i = 1; i <= n; ++i)
        {
            scanf("%d%d",&l,&r);
            Add(i+n,e,0,l,r);
        }
        int u,v,u1,v1;
        for(int i = 0,R = n*n/2; i < R; ++i)
        {
            scanf("%d%d%d%d",&u,&v,&u1,&v1);
            if(tu[u][v] && !tu[u1][v1])
            {
                if(u == u1)
                {
                    Add(v+n,v1+n,1,0,1);
                }
                else Add(u,u1,1,0,1);
            }
            else if(!tu[u][v] && tu[u1][v1])
            {
                if(u == u1)
                {
                    Add(v1+n,v+n,1,0,1);
                }
                else Add(u1,u,1,0,1);
            }
        }
        int ss = e+1,ee = e+2;
        sum_flow = 0;
        for(int i = 0; i <= e; ++i)
        {
            if(f[i] > 0)
            {
                add(ss,i,0,f[i]);
                sum_flow += f[i];
            }
            else add(i,ee,0,-f[i]);
        }
        add(e,s,0,inf);
        get_mincost(ss,ee);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值