语言模型--n-gram解读

n元语法是一个非常经典的语言模型。
一、N-Gram的原理
N-Gram是基于一个假设:第n个词出现与前n-1个词相关,而与其他任何词不相关。(这也是隐马尔可夫当中的假设。)整个句子出现的概率就等于各个词出现的概率乘积。各个词的概率可以通过语料中统计计算得到。假设句子T是有词序列w1,w2,w3…wn组成,用公式表示N-Gram语言模型如下:
P(T)=P(w1)*p(w2)*p(w3)***p(wn)=p(w1)*p(w2|w1)*p(w3|w1w2)***p(wn|w1w2w3…)

一般常用的N-Gram模型是Bi-Gram和Tri-Gram。分别用公式表示如下:
Bi-Gram:  P(T)=p(w1|begin)*p(w2|w1)*p(w3|w2)***p(wn|wn-1)
Tri-Gram:  P(T)=p(w1|begin1,begin2)*p(w2|w1,begin1)*p(w3|w2w1)***p(wn|wn-1,wn-2)

注意上面概率的计算方法:P(w1|begin)=以w1为开头的所有句子/句子总数;p(w2|w1)=w1,w2同时出现的次数/w1出现的次数。以此类推。(这里需要进行平滑)

二、N-Gram的应用
根据上面的分析,N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,它主要有两个重要应用场景:
(1)人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理。
(2)另外一方面ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值