Hugging Face模型下载方法指南

目录

一、通过代码自动下载(推荐)

二、使用huggingface_hub库(适合批量或受限模型)

三、手动下载文件(适用于无代码环境)

四、使用Git LFS下载(适合大型模型)

五、镜像加速与离线方案 

注意事项


 

一、通过代码自动下载(推荐)

  1. 使用transformers:首次调用from_pretrained()函数时会自动下载模型文件到本地缓存目录(默认路径为~/.cache/huggingface/transformers)。
    from transformers import AutoTokenizer, AutoModel
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    model = AutoModel.from_pretrained("bert-base-uncased")

     

  2. 指定缓存路径:通过cache_dir参数自定义下载目录:
    model = AutoModel.from_pretrained("bert-base-uncased", cache_dir="/your/custom/path")

二、使用huggingface_hub库(适合批量或受限模型)

对于需要访问权限的模型(如Llama2),需先登录并获取访问令牌:

  1. 安装库并登录
    pip install huggingface_hub
    huggingface-cli login
  2. 下载模型
    from huggingface_hub import snapshot_download
    repo_id = "meta-llama/Llama-2-70b-hf"
    local_dir = "/path/to/save/model"
    snapshot_download(repo_id=repo_id, local_dir=local_dir, ignore_patterns=["*.bin"])

三、手动下载文件(适用于无代码环境)

 

  1. 访问模型页面:在Hugging Face模型库搜索目标模型(如bert-base-uncased)。

  2. 下载关键文件:进入模型页面的"Files and versions"标签页,下载以下必要文件:

    1. 核心文件config.json(配置)、pytorch_model.bintf_model.h5(权重)、vocab.json(词表)。

    2. 附加文件tokenizer.jsontokenizer_config.json等(分词器相关)。

  3. 本地加载:将文件保存到指定目录后,通过路径加载:
    model = AutoModel.from_pretrained("./local_model_dir")

四、使用Git LFS下载(适合大型模型)

  1. 安装Git LFS
    # Linux
    sudo apt-get install git-lfs
    git lfs install
    
    # Windows(需先安装Git)
    git lfs install
  2. 克隆仓库

    git clone https://huggingface.co/bert-base-uncased

五、镜像加速与离线方案 

  1. 国内镜像:使用镜像站点(如hf-mirror.com)加速下载:
    import os
    os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
    # 之后正常使用from_pretrained()
  2. 离线使用:将模型文件部署到服务器后,设置环境变量:

export TRANSFORMERS_OFFLINE=1

注意事项

  • 文件完整性:确保下载的文件名称与官方一致,否则加载可能失败。

  • 安全风险:避免加载来源不明的模型,防止恶意代码注入。

  • 权限问题:部分模型(如Llama2)需申请权限才能下载。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值