Hugging Face模型下载方法指南

目录

一、通过代码自动下载(推荐)

二、使用huggingface_hub库(适合批量或受限模型)

三、手动下载文件(适用于无代码环境)

四、使用Git LFS下载(适合大型模型)

五、镜像加速与离线方案 

注意事项


 

一、通过代码自动下载(推荐)

  1. 使用transformers:首次调用from_pretrained()函数时会自动下载模型文件到本地缓存目录(默认路径为~/.cache/huggingface/transformers)。
    from transformers import AutoTokenizer, AutoModel
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    model = AutoModel.from_pretrained("bert-base-uncased")

     

  2. 指定缓存路径:通过cache_dir参数自定义下载目录:
    model = AutoModel.from_pretrained("bert-base-uncased", cache_dir="/your/custom/path")

二、使用huggingface_hub库(适合批量或受限模型)

对于需要访问权限的模型(如Llama2),需先登录并获取访问令牌:

  1. 安装库并登录
    pip install huggingface_hub
    huggingface-cli login
  2. 下载模型
    from huggingface_hub import snapshot_download
    repo_id = "meta-llama/Llama-2-70b-hf"
    local_dir = "/path/to/save/model"
    snapshot_download(repo_id=repo_id, local_dir=local_dir, ignore_patterns=["*.bin"])

三、手动下载文件(适用于无代码环境)

 

  1. 访问模型页面:在Hugging Face模型库搜索目标模型(如bert-base-uncased)。

  2. 下载关键文件:进入模型页面的"Files and versions"标签页,下载以下必要文件:

    1. 核心文件config.json(配置)、pytorch_model.bintf_model.h5(权重)、vocab.json(词表)。

    2. 附加文件tokenizer.jsontokenizer_config.json等(分词器相关)。

  3. 本地加载:将文件保存到指定目录后,通过路径加载:
    model = AutoModel.from_pretrained("./local_model_dir")

四、使用Git LFS下载(适合大型模型)

  1. 安装Git LFS
    # Linux
    sudo apt-get install git-lfs
    git lfs install
    
    # Windows(需先安装Git)
    git lfs install
  2. 克隆仓库

    git clone https://huggingface.co/bert-base-uncased

五、镜像加速与离线方案 

  1. 国内镜像:使用镜像站点(如hf-mirror.com)加速下载:
    import os
    os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
    # 之后正常使用from_pretrained()
  2. 离线使用:将模型文件部署到服务器后,设置环境变量:

export TRANSFORMERS_OFFLINE=1

注意事项

  • 文件完整性:确保下载的文件名称与官方一致,否则加载可能失败。

  • 安全风险:避免加载来源不明的模型,防止恶意代码注入。

  • 权限问题:部分模型(如Llama2)需申请权限才能下载。

 

### 如何打包并下载 Hugging Face 模型 为了实现模型的打包和下载,可以遵循一系列特定的操作指南。当涉及到Hugging Face上的模型操作时,通常会利用其提供的工具和支持库来简化这一过程。 对于想要从Hugging Face平台获取已训练好的模型文件的情况,可以通过命令行界面执行克隆仓库的动作[^2]: ```bash git clone https://huggingface.co/{model-repo} ``` 这里`{model-repo}`代表的是目标模型所在的存储库名称。此命令将会复制整个项目到本地计算机上,其中包括配置文件、权重以及其他任何关联资源。 如果仅需导出模型以便于离线部署或其他用途,则可采用如下方式保存模型及其对应的分词器至指定目录下: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # 加载预训练模型和分词器 model = AutoModelForCausalLM.from_pretrained('facebook/opt-125m') tokenizer = AutoTokenizer.from_pretrained('facebook/opt-125m') # 将模型和分词器保存到本地路径 save_directory = "./local_model" model.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory) ``` 上述代码片段展示了如何使用Transformers库中的API接口完成模型与分词组件的同时保存工作。通过这种方式获得的数据集可以直接用于后续的应用开发或进一步的研究分析之中[^1]。 一旦完成了这些步骤之后,就可以轻松地将所需材料转移至其他环境当中去了。值得注意的是,在处理大型神经网络结构时可能还会遇到额外的技术挑战,比如内存占用过高或者是依赖版本兼容性等问题;因此建议提前做好充分准备以应对可能出现的各种状况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值