词汇积累
代价函数 (cost function)
梯度下降 (gradient descent)
变量(variable)
收敛(convergence)
学习总结
假设函数(含参 θ0 和 θ1)用来表示拟合数据集的函数,通过求代价函数的最小值确定参数 θ0 和 θ1 的最优解。在解决实际问题中,一个线性函数,从任意位置( θ0 ,θ1)出发,结合梯度下降算法,得到局部最优解的过程叫做线性回归的梯度下降算法。
课程记录
a.数据集介绍及代价函数的理解 :
m表示训练集的大小
(x,y)表示训练集
(x(i),y(i))表示其中一组数据
假设函数:假设可以拟合数据集的函数(我的理解)
下图是假设函数为线性函数时的情形,此时我们的目的变成,得到一个 θ0 和 θ1 的组合,使假设函数值 h(x)能够最大限度的拟合数据集的输出结果 y
利用代价函数通过一些列计算可以得到合适的 θ0 和 θ1,将假设函数带入代价函数,我们的目标现在变成了如何得到这个这个二元( θ0 和 θ1)二次多项式的最小值
下图是为了便于理解,画出了在假设函数 θ0=0 时,找最合适的 θ1 的情况。可以看到此时的代价函数图像为一元二次函数的图像,此时导数为零的点的 θ1 的值为我们要求的结果
回到两个参数( θ0 和 θ1)时的情况如下:
下图是求两个参数的代价函数,不断逼近其最小值的过程,右边是其等高线示意图。
我们把实现这一不断逼近代价函数最小值的数学过程,称之为梯度下降
b.梯度下降
下图是梯度下降算法不断更新 θ0 和 θ1 的公式
需要注意的地方有:
1.α是学习率,学习率越大下降的越快
2." := "该符号是赋值符号
3. θ0 和 θ1必须同时更新
下图是梯度下降过程示意图(可以看到起始位置不同,到达了不同的局部最优解)
c.线性回归的梯度下降
一个参数的线性回归的梯度下降
线性回归的梯度下降
下图为公式推导及说明(涉及简单的二元二次方程求偏导)