目标跟踪SAMF算法笔记

SAMF算法是对KCF的改进,通过结合灰度、HOG和CN特征实现多特征融合,以增强跟踪性能。同时,它使用多尺度搜索策略,在每个帧中对比7个不同尺度的候选目标,选择响应值最高的作为当前目标。虽然这种方法提高了跟踪效果,但速度相对较慢,大约为7FPS。相比KCF,减少尺度数量和增大尺度步长能显著提升跟踪速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SAMF是在KCF的基础上改进的,采用多特征(灰度,Hog,CN)融合。Hog特征与CN特征能够实现互补(颜色与梯度))。并且采用多尺度搜索策略。

多特征融合

文章中的多特征融合就是简单的矢量叠加,公式如下:
KCF
SAMF
x是传统KCF算法中提取的单独特征,而Xc中是三种特征的混合。算法相当于将三种特征进行简单的矢量叠加。

多尺度

它的思想很简单,就是在比较的阶段对候选区域的目标做七个尺度的计算,与上一帧目标进行比较,其响应值最大的作为当前帧中的目标。

样本的尺度为(即加入padding后的样本)。
样本的尺度
定义一个尺度池为,里面包含尺度因子。源代码中选择了1.005间隔的7个尺度因子(DSST为33个)。
在这里插入图片描述
再利用双线性插值法使得各个尺度的样本变成与初始样本ST一致的大小。不同尺度因子的样本图如下所示:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值