SAMF是在KCF的基础上改进的,采用多特征(灰度,Hog,CN)融合。Hog特征与CN特征能够实现互补(颜色与梯度))。并且采用多尺度搜索策略。
多特征融合
文章中的多特征融合就是简单的矢量叠加,公式如下:
x是传统KCF算法中提取的单独特征,而Xc中是三种特征的混合。算法相当于将三种特征进行简单的矢量叠加。
多尺度
它的思想很简单,就是在比较的阶段对候选区域的目标做七个尺度的计算,与上一帧目标进行比较,其响应值最大的作为当前帧中的目标。
样本的尺度为(即加入padding后的样本)。
定义一个尺度池为,里面包含尺度因子。源代码中选择了1.005间隔的7个尺度因子(DSST为33个)。
再利用双线性插值法使得各个尺度的样本变成与初始样本ST一致的大小。不同尺度因子的样本图如下所示: