视点变换与视点方向

作用
  • 通过变换,可以简洁高效地设置和编辑三维场景
  • 光照位置
  • 视点方向
基本变换
  • 将空间中一个点x映射成其他点x1的函数
  • 就是一个映射函数,可以表示成矩阵
  • 不变Identity 平移 Translation 旋转 Rotation 均衡缩放 Isotropic scaling
  • 简单变换都是可逆的
  • 变换可以相互复合与嵌套
变换的种类
刚体变换
  • 保持度量(长度,角度,大小)
  • 不变,平移, 旋转 以及复合
相似变换
  • 保持角度
  • 不变,平移,旋转,均衡缩放以及复合
线性变换
  • 满足方程L(p+q)=L§+L(q) aL§ = L(ap)
  • 不变,旋转,缩放(不一定要均衡缩放)
  • 对称,错切
仿射变换
  • 保持直线以及直线与直线的平行
  • 线性变换
  • 相似变换以及复合
投影变换
齐次坐标
  • 因为用三维矩阵的形式会有个常数在外面不够优美
  • 然后就用四维矩阵来表示三维空间中的点和向量
  • 然后很多变换都可以用矩阵来表示了
  • 在用齐次坐标表示变换矩阵的几种形式里面
  • 旋转我不明白
  • 围绕单位向量的旋转变换很复杂,我也不明白
变换的复合
  • 就是两个映射矩阵的乘积,因为矩阵不满足交互律
  • 因此交换的复合也是不满足交换律的
法向量变换
  • 因为在物体发生变换以后,他原来的法向量不再与其正交
  • 因此我们需要找到一个变换矩阵,让原来的法向量与其相乘后,得到变换后的法向量
  • 先变换切平面,再通过切平面计算法向量,而不是直接计算
  • 因此法向量的变换矩阵是原变换矩阵的逆的转置
投影模式
  • 透视投影(视点在有限距离处的投影模式),具有立体效果
    • 当视点位于原点,投影平面为z=d时
    • 透视投影矩阵T(x,y,z)=(dx/z,dy/z,z)
  • 正交投影(假如xy平面是投影平面,直接扔掉z坐标即可)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值