常见语义分割论文列表

文章中文题目摘要
Learning a Discriminative Feature Network for Semantic SegmentationDFN学习用于语义分割判别特征网络(DFN网络结构见图2,所谓“descriminative Feature”指从不同通道中找到更具判别能力的特征
Smooth Network:增强同类像素一致性(高层特征指导低层特征,计算通道权值CAB);
Border Network:增强语义边界部分的响应;
BiSeNet - Bilateral Segmentation Network for Real-time Semantic Segmentation用于实时语义分割双边分割网络速度可达实时Table5)。网络结构如图2,共两路
空间路:步长小,保细节;
Context Path:步长大,扩大视野。
最后两路融合(FFM)
LadderNet - Multi-Path Networks Based on U-NET for Mediacal Image Segmentation基于U-NET多路径网络医学图像分割中的应用多个U-Net串起来,像个梯子,如图1
用于医学图像分割
Dual Attention Network for Scene SegmentationDANet用于场景分割双注意网络DANetAttention:空间和通道(Channel)。Dilation FCN基础上改进
Attention U-Net - Learning Where to Look for the Pancreas注意力U-Net —— 学习在哪里寻找胰腺U-Net网络中加入Attention Gate,实现粗尺度指导细尺度特征的refine。用于医学图像分割
Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image SegmentationR2U-Net——基于U-Net递归残差卷积神经网络医学图像分割中的应用U-Net中采用循环残差层替换原来的卷积层。用于医学图像分割
Understanding Convolution for Semantic Segmentation理解卷积语义分割中的应用1. DUC:密集上采样
2. HDC:混合扩张卷积
2
Learning to Adapt Structured Output Space for Semantic Segmentation基于结构化输出空间语义分割学习语义分割领域基于GAN的域自适应问题(源样本与目标样本来自不同域,但景物内容相似,且源图像有gt,而target没有)
这个方法解决了
gt过少的问题(可以采用相似的图像进行训练,而不必每个样本都有gt
ShuffleSeg - Real-Time Semantic Segmentation NetworkShuffleSeg——实时语义分割网络基于ShuffleNet,网络结构如图1。由于ShuffleNet属于轻量级网络,因此可以实现实时
ESPNet - Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation空洞卷积空间金字塔用于语义分割如图1,将普通卷积分解为1x1卷积空间金字塔融合卷积两步
CCNet - Criss-Cross Attention for Semantic SegmentationCCNet——十字交叉注意力语义分割如图1,采用十字方式分布处理,可以获得空间更远距离的信息(Context Info),同时参数量降低。
DenseASPP for Semantic Segmentation in Street ScenesDenseASPP街道场景语义分割中的应用密集ASPP(ASPP:空洞空间金字塔池化,不同rate的空洞卷积,DeepLabv3采用的技术),如图2
RefineNet - Multi-Path Refinement Networks for High-Resolution Semantic SegmentationRefineNet——用于高分辨率语义分割多径细化网络如图2,利用低层(高分辨率)的特征来refine高层(低分辨率)的特征,最终利用softmax来进行像素级的分类。文中的refine模块采用了残差模块
Pyramid Scene Parsing NetworkPSPNet金字塔场景分析网络PSPNet金字塔场景分析,如图3。采用不同尺度的池化可以处理不同分辨率的物体,最后上采样后融合,再进行语义(场景)分割
Large Kernel Matters - Improve Semantic Segmentation by Global Convolutional NetworkGCNet大核问题——全局卷积网络改进语义分割GCNet网络结构见图2,语义分割需要尽量多的Context信息,这就需要大的卷积核(GCN),而大的卷积核会造成计算复杂度提高,因而,文中采用分两步计算的方法(图2,B)。同时在网络中添加边缘refine模块
整个结构由FCN发展而来
DeepLab - Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFsDeepLab——使用深度卷积网空洞卷积全连接CRF语义图像分割DeepLab-1ASPP(不同rate的空洞卷积)+ 全连接CRF
Rethinking Atrous Convolution for Semantic Image SegmentationDeepLab-3——语义图像分割空洞卷积的再思考DeepLab-3,去掉全连接CRF
Encoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationDeepLab-3+——用于语义图像分割可分离空洞卷积编码解码器DeepLab-3+https://github.com/tensorflow/models/tree/master/research/deeplab
1. DeepLab-3的基础上添加编解码结构
2. 添加Xception model
CVPR2019
Co-Occurrent Features in Semantic Segmentation语义分割中的共现特征考虑的语义分割中不同语义之间的关系(共现:Co-occurrent,图3),实际上是考虑不同位置之间的点积信息
Knowledge Adaptation for Efficient Semantic Segmentation有效语义分割知识自适应基于知识蒸馏的方法(利用复杂的teacherNet指导简单的studentNet,从而得到更快速、效果更佳的推断),实现语义分割
All About Structure: Adapting Structural Information Across Domains for Boosting Semantic Segmentation关于结构:跨域调整结构信息推进语义分割文章认为高层结构特征是域不变的,而低层纹理特征是域变化的。如图2,采用编解码结构,将结构特征与纹理特征分离,利用域不变的结构特征训练语义分割网络。定义了相对应的一组损失函数
Structured Knowledge Distillation for Semantic Segmentation基于结构化知识蒸馏语义分割结合三类知识蒸馏方法(像素级、像素对级和整体级),实现由复杂网络到简单网络的知识蒸馏
Geometry-Aware Distillation for Indoor Semantic Segmentation用于室内语义分割几何感知蒸馏1. 所谓“几何”,在此是“深度”的意思
2. 本文算法即将
深度语义分割同时进行,而语义分割采用的是带深度的pipeline
3.
训练集带有深度的RGB图像
Context-Reinforced Semantic Segmentation上下文强化语义分割利用上下文来提升语义分割效果,而上下文分割结果之间,利用强化学习来相互增强。如图2
Bidirectional Learning for Domain Adaptation of Semantic Segmentation基于域自适应双向学习语义分割基于域自适应弱监督语义分割两个子网(有标签的源到无标签目标的translate网,及目标域的语义分割网),传统的方法是先从源到目标,再训练。本文方法是translate分割两个子网之间双向训练(影响)
Building Detail-Sensitive Semantic Segmentation Networks With Polynomial Pooling基于多项式池化细节敏感语义分割网络的构建提出了一个(适用于语义分割)的,介于平均池化和最大池化之间的多项式池化(公式1),并对其进行分析和实验
Adaptive Pyramid Context Network for Semantic Segmentation用于语义分割自适应金字塔上下文网络研究Content信息在语义分割中的作用,指出context信息的使用应满足三个特点:1. 多尺度;2. 自适应;3. 全局引导局部Affinity(两两相关),并提出ACM(自适应Context模块,见图2),从中可见,多尺度、自适应(体现在其Affinity矩阵是学习而来的),全局引导局部Affinity(矩阵相乘)
Semantic Projection Network for Zero- and Few-Label Semantic Segmentation零标签少标签语义分割语义投影网络零镜头或少镜头的语义分割,网络结构如图2
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells基于辅助单元紧凑语义分割模型的快速神经结构搜索用于语义分割的神经网络结构搜索方法(图1)
DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation面向实时语义分割深度特征聚合网络结构如图3,分为子网络特征聚合和子阶段特征聚合(如图2),速度比较快(100FPS)
A Cross-Season Correspondence Dataset for Robust Semantic Segmentation一种鲁棒语义分割跨季节对应数据集相同场景,不同季节的数据集,如图2,每对图像创建对应点
Customizable Architecture Search for Semantic Segmentation基于可定制体系结构搜索语义分割强调可定制,即用户输入条件(限制),搜索满足用户条件的轻量级的网络结构其条件(限制)体现在自定义的损失函数中。
ICCV2019
Asymmetric Non-Local Neural Networks for Semantic Segmentation非对称非局部神经网络用于语义分割语义分割网中嵌入NonLocal-Block,并将其改进为非对称NonLocal-Block,并进一步添加金字塔池化多级融合技术(见框图)
CCNet: Criss-Cross Attention for Semantic SegmentationCCNet:基于交叉注意语义分割利用十字(criss-cross)方式,高效地获取全局上下文信息
SSF-DAN: Separated Semantic Feature Based Domain Adaptation Network for Semantic SegmentationSSF-DAN:基于分离语义特征域自适应实现语义分割(待标签的)训练样本与真实域无标签训练样本在不同域,因此采用域自适应的方法,来实现弱监督的语义分割。本文采用GAN的方法,如图2
Domain Adaptation for Semantic Segmentation With Maximum Squares Loss基于最大平方损失域自适应实现语义分割基于域自适应的语义分割,提出两点改进:1. 提出新的损失函数;2. 提出类别重加权,以解决类别不平衡的问题
ACE: Adapting to Changing Environments for Semantic SegmentationACE:适应不断变化的环境实现语义分割基于域自适应的语义分割
Dynamic Multi-Scale Filters for Semantic Segmentation用于语义分割动态多尺度滤波器如图2,网络中添加多个个基于自适应池化学习出来的滤波器
Orientation-Aware Semantic Segmentation on Icosahedron Spheres二十面体球面上方向感知语义分割全方向(omnidirectional)图像的语义分割
Towards Bridging Semantic Gap to Improve Semantic Segmentation通过桥接语义鸿沟实现语义分割改进文章关注不同尺度特征的融合问题,在图6的网络结构中,使用了图4的三个模块,主要从多尺度融合边缘感知两个方向,提升语义分割的效果
Expectation-Maximization Attention Networks for Semantic Segmentation基于期望最大化注意力网络语义分割如图2,将EM算法的思想和迭代过程,嵌入到深度网络中,目的是替代自监督Attention过程(无需访问所有数据,较Non-Local更为灵活,且可以提升速度)
Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation基于引导课程模型自适应不确定性感知评价夜间图像语义分割课程学习、自适应、夜间图像的语义分割
Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation显著性检测弱监督语义分割联合学习弱监督语义分割:输入两类训练集(像素级显著性训练集和类别级分类训练集),训练后的像素级语义分割
ACFNet: Attentional Class Feature Network for Semantic SegmentationACFNet:基于注意力类特征网络语义分割一种利用类别特征进行语义分割refine的方法,如图2,3。
在粗粒度的语义分割基础上,提取不同类别的特征,进一步由不同类别的特征,对骨干网提出的特征进行Attention,并在此基础上refine
Significance-Aware Information Bottleneck for Domain Adaptive Semantic Segmentation基于重要性感知信息Bottleneck域自适应语义分割基于GAN的域自适应语义分割的改进,对潜变量进行重要性感知的限制(如图2,3)
Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial Approach基于自我激励金字塔课程跨域语义分割:一种非对抗性方法课程学习:基于局部分布
自我激励:基于潜变量
本文将两种方式结合起来,并结合金字塔技术,实现域自适应的语义分割

 

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值