Dify rerank model is deprecated in knowledge base

这是可优化的细节。这里过时的提示倾向于说工作空间有一个默认的重新排名模型,但在执行一些前端逻辑后我们发现当前的重新排名模型是空的或未定义的,因此这个当前模型已过时。

但这里默认模型实际上是一个所有字段都是空字符串的模型结构:

{
 "provider":"",
 "model": ""
}

在这种情况下,缺省模型实际上是空的且无效。因此,在这里我们不会显示过时标志,而是更有可能告诉用户为工作区配置至少一个重排序模型,就像我们在未设置文本嵌入模型时所做的那样

本文已收录在Github关注我,紧跟本系列专栏文章,咱们下篇再续!

  • 🚀 魔都架构师 | 全网30W+技术追随者
  • 🔧 大厂分布式系统/数据中台实战专家
  • 🏆 主导交易系统亿级流量调优 & 车联网平台架构
  • 🧠 AIGC应用开发先行者 | 区块链落地实践者
  • 🌍 以技术驱动创新,我们的征途是改变世界!
  • 👉 实战干货:编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

### Dify Rerank模型介绍 Dify 提供了强大的重排序(Rerank)功能来优化搜索结果的质量。通过集成先进的机器学习算法,该平台能够对初步检索到的结果进行二次评估并重新排列顺序,从而提高最相关文档的位置[^1]。 在具体实现上,用户可以通过访问Xinference的服务界面完成Rerank模型的选择与启动操作。这涉及到进入相应的服务页面之后,按照指引定位至合适的选项卡下挑选所需的模型实例。 对于希望自定义嵌入(embedding)向量表示的应用场景而言,Dify同样提供了灵活的支持机制。开发者可以在设置过程中指定采用由Xinference提供的embed模型作为基础组件之一,进而服务于后续更复杂的处理流程,比如基于这些特征向量执行相似度计算或是参与最终的排名调整过程[^2]。 值得注意的是,在构建涉及多源数据融合的知识查询系统时,除了基本的索引建立外,合理利用像Rerank这样的高级特性可以显著改善用户体验。特别是在面对复杂的信息结构以及多样化的提问方式情况下,精准匹配目标内容变得更加重要[^3]。 ```python # 示例代码展示如何调用API接口获取经过重排后的候选列表 import requests def get_reranked_results(query, top_k=5): url = "http://your-dify-server/api/v1/rerank" payload = { 'query': query, 'top_k': top_k } response = requests.post(url, json=payload) return response.json()['results'] # 使用示例 print(get_reranked_results('人工智能')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值