点击下方“JavaEdge”,选择“设为星标”
第一时间关注技术干货!
免责声明~
任何文章不要过度深思!
万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」;
不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人。
怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」
0 前言
诚信难的当下,商品评论已成连接买家卖家的重要桥梁。2022年全球主要电商平台平均每件商品收到约50条评论,热门商品评论数更轻松突破千条。充分体现商品评论在电商体系地位。
1 商品评论的意义
Infographic: How consumers read and write local business reviews:

1.1 对买家
其他消费者的真实体验和反馈往往是做出购买决策的关键因素。研究显示,超过 **95%**的在线用户会在做出购买决定前阅读商品评论。平均每次购物之间会查看至少 10 行评论信息。详实、客观的评论:
帮助潜在客户了解商品优缺
提供实际使用体验
降低购买风险
提高购物满意度
你也就能理解为啥那么多带货的评测短视频了。
1.2 对卖家
商品评论是面照妖镜,直接反映产品质量、服务水平及客户满意度。所以你也能理解,很多 B 端产品,产商就自主隐藏差评,只留下好评忽悠新的客户。因此,结合线下使用体验才能更全面。
商品评分每提高一星,销量平均可提升 5-9%。分析评论,卖家可及时发现并解决产品或服务中存在的问题,不断改进优化,提升品牌形象和客户忠诚度。积极评论还能吸引新客户,带来更多曝光销量。
2 传统商品评论的挑战
传统评论处理无法充分发挥评论的价值。当前商品评论系统痛点:
2.1 C 端用户体验不佳
之前商品介绍信息主要通过传统的列表、标签等呈现,难快速传达核心信息。C 端通常需手动点击和刷新评论列表,自行总结最近多数用户的评论或者产品的关键信息。耗时耗力,且:
信息过载:面对海量评论图文,用户难提取关键信息
偏见风险:用户可能过度关注极端评论,忽视了更具代表性的中立意见
时间成本高:需要花费大量时间阅读和筛选评论,影响购物效率
难以全面把握:用户可能错过重要信息,无法全面了解产品的优缺点
2.2 对 B 端商家影响
2.2.1 用户评论处理效率低下
人工成本高:通常需售后专人阅读大量评论信息,费人力
处理速度慢:人工处理评论速度<<评论产生速度,信息滞后
主观性强:不同人对评论理解和总结有异,影响决策准确性
难量化:传统方法难量化分析评论,不利数据驱动决策
2.2.2 产品迭代周期长
产品迭代需40天以上:从评论总结有效的产品和服务改进方案,到实际执行和见效,整个过程耗时过长
市场反应迟缓:无法及时响应用户需求和市场变化,可能导致竞争力下降
问题积累:长周期导致问题不断累积,可能造成更严重负面影响
2.2.3 数据价值未被充分挖掘
趋势预测困难:难从评论中及时发现新兴趋势和潜在机会。
竞品分析不足:缺乏有效工具对比分析竞品评论,难以精准把握市场定位。
用户洞察有限:难深入分析用户需求和行为模式,影响产品开发和营销策略。
3 商品评论的特点
3.1 综合分析多条评论
需综合多条评论以获完整产品情况
不同类型商品和用户群体的评论关注点不同
需考虑时间因素和重点提取
3.2 多样化场景
C端需快速浏览和决策辅助
B端需产品改进、市场洞察和竞品分析
3.3 离线处理
一般无需实时处理,批量处理即可
优化资源使用和深度分析
3.4 大数据处理
处理大量评论数据,支持增量更新
多语言支持和情感分析
3.5 信息质量不齐
需要过滤垃圾评论和验证真实性。
4 GenAI在评论应用
GenAI凭其强大NLP能力,可高效分析和总结大量评论、提取关键信息、识别情感倾向,甚至生成简洁明了评论摘要:
帮助买家快速了解商品优缺
为卖家提供有价值的分析,辅助决策和改进
4.1 应用场景盘点
根据评论的应用场景和 GenAI 特点,应用场景可归类:
应用分类 | 应用场景 | 场景介绍 | 目标收益 |
---|---|---|---|
C 端用户 | 用户查看的商品评论总结 | 帮助用户快速商品购买体验,提升选品效率。 结合用户和产品特点,总结针对性商品评论信息。 根据总结关键词,快速定位原始评论信息 | 1. 提升选品效率 |
B 端用户 | 根据评论信息给出商品改建建议 | 快读根据评论总结改进建议,帮助商家快速了解用户对商品的体验,从而根据体验反馈改进商品。 不断提升产品迭代周期 | 1. 提升产品竞争力 |
根据评论信息总结回复内容 | 分析评论内容,总结回复用户评论信息 | 1. 防止评论遗漏 | |
根据评论总结产品体验趋势 | 根据评论感知用户体验的变化; 洞察用户对消费者的偏好和市场趋势 | 1. 根据市场洞察,总结市场消费趋势 |
5 GenAI方案设计
5.1 平台选择
如Bedrock,某逊提供的生成式AI服务平台。允许开发者无缝接入多种顶级基础模型,而无需管理复杂基础设施。
5.2 模型选择
Nova是新一代最先进基础模型,具有前沿的智能和行业领先的性价比,可在Bedrock上用。 Nova模型包括三种理解模型和两种创意内容生成模型。
5.3 离线批量处理
使用批量推理,可提交多个提示并异步生成响应。批量推理通过发送单个请求并在 S3 生成响应,助高效处理大量请求。在您创建的文件中定义模型输入后,需将相应文件上传到S3。然后,你需提交批量推理请求并指定 S3 bucket。作业完成后,你可从 S3 检索输出文件。可用批量推理来提高对大型数据集的模型推理性能。
高效处理:一次处理大量评论,提高处理效率
成本优化:批量处理降低 API 调用频率,优化成本
灵活调度:可在系统负载较低时进行处理,优化资源利用
深度分析:更充足时间全面、深入分析
5.4 语义检索
Bedrock Knowledge Bases
借助Bedrock知识库,可将专有信息集成到你的AIGC应用。查询时,知识库会搜索你的数据以查找相关信息来回答查询。为支持基于语义的评论检索,引入知识库和向量化存储:
使用适当的嵌入模型将评论内容向量化。
将向量化后的评论存储在专门的向量数据库中(如 Amazon OpenSearch)。
实现基于语义的相似度搜索,支持更准确的评论检索。
这允许我们根据总结中的关键词或概念,快速找到最相关原始评论,大大提高检索准确性和效率。
通过该设计,即可创建一个强大、灵活且可扩展 GenAI 解决方案,有效处理大规模电商评论数据,为C、B端用户提供高质量分析结果。
6 总结
本文深入GenAI在电商评论场景应用,聚焦场景分析和技术选型。先阐述商品评论对买家和卖家的重要性,揭示传统评论处理方法面临的诸多挑战,如信息过载、效率低下和产品迭代周期长等问题。
详细分析电商评论处理独特特点,包括需要综合分析多条评论、适应多样化的C端和B端场景、处理大量数据等。这些特点为 GenAI 的应用提供广阔空间。
技术选型:提出基于某逊的综合解决方案。核心技术包括用 Bedrock 的 Nova 模型进行评论分析,利用 Batch Inference 实现高效离线处理。
后续继续探讨实现细节,如离线数据分析处理的流程,以及如何实现基于语义的评论信息查询。为大家提供更全面、实用的 GenAI 应用指南。
参考:
https://www.brightlocal.com/research/local-consumer-review-survey-2023/
本文已收录在Github Java-Interview-Tutorial,关注我,紧跟本系列专栏文章,咱们下篇再续!
🚀 魔都架构师 | 全网30W+技术追随者
🔧 大厂分布式系统/数据中台实战专家
🏆 主导交易系统亿级流量调优 & 车联网平台架构
🧠 AIGC应用开发先行者 | 区块链落地实践者
🌍 以技术驱动创新,我们的征途是改变世界!
👉 实战干货:编程严选网
关注我,紧跟本系列专栏文章,咱们下篇再续!
加我好友,一起AI探索交流:
写在最后
编程严选网:
http://www.javaedge.cn/
专注分享AI时代下软件开发全场景最新最佳实践,点击文末【阅读原文】即可直达~