FD-FAug:Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation

本文介绍了NeurIPS2018的一篇论文,提出了联邦蒸馏(FD)和联合增强(FAug)来解决通信效率和非IID数据问题。FD是一种分布式在线知识蒸馏方法,减少了通信负载;FAug利用GAN进行数据增强,以应对数据异构性。文章讨论了网络流程、数据扩充策略,并引发了对隐私保护的思考。
摘要由CSDN通过智能技术生成

在这里插入图片描述

NeurIPS2018,应该是第一篇结合蒸馏和联邦的文章了,所以从这开始看顶会顶刊的文章,希望尽快有自己的想法。文章将通讯传递的模型梯度换成了类别平均logits提升了通讯效率,使用GAN生成图片处理数据异构问题。

论文地址:arxiv
code: 没找到

贡献

  1. 提出联邦蒸馏(FD)提高通信效率,这是⼀种分布式在线知识蒸馏方法,其通信有效负载大小不取决于模型大小,而是取决于输出维度
  2. 联合增强(FAug)纠正非 IID训练数据集,这是⼀种使用生成对抗网络(GAN)的数据增强方案,该方案基于 GAN 的数据增强方案在隐私泄露和通信开销之间进行权衡。经过训练的 GAN 使每个 client 能够本地再现所有 clients 的数据样本,从而生成 IID 数据。

网络流程

咋说呢?这个流程只改动了运用到知识蒸馏的部分,也就是损失加上蒸馏损失,传的参数改成logits。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值