NeurIPS2018,应该是第一篇结合蒸馏和联邦的文章了,所以从这开始看顶会顶刊的文章,希望尽快有自己的想法。文章将通讯传递的模型梯度换成了类别平均logits提升了通讯效率,使用GAN生成图片处理数据异构问题。
论文地址:arxiv
code: 没找到
贡献
- 提出联邦蒸馏(FD)提高通信效率,这是⼀种分布式在线知识蒸馏方法,其通信有效负载大小不取决于模型大小,而是取决于输出维度
- 联合增强(FAug)纠正非 IID训练数据集,这是⼀种使用生成对抗网络(GAN)的数据增强方案,该方案基于 GAN 的数据增强方案在隐私泄露和通信开销之间进行权衡。经过训练的 GAN 使每个 client 能够本地再现所有 clients 的数据样本,从而生成 IID 数据。
网络流程
咋说呢?这个流程只改动了运用到知识蒸馏的部分,也就是损失加上蒸馏损失,传的参数改成logits。