ACL2020论文-知识图谱词义消岐论文翻译及详解(EWISER)

该论文提出了一种名为EWISER的神经结构,它结合了表示学习和关系信息来增强词义消岐(WSD)的性能。通过利用预训练的同步向量和知识图谱,模型能够处理未在训练集中出现的情况,从而在多个评估集上达到最先进的水平,首次突破了80%的准确率壁垒。这一成果对于多语言全词WSD也有显著影响,仅用英文训练就取得了跨语言的最优结果。
摘要由CSDN通过智能技术生成

论文原名:
Breaking Through the 80% Glass Ceiling:
Raising the State of the Art in Word Sense Disambiguation
by Incorporating Knowledge Graph Information

概要
神经结构是最新的词义消岐技术(WSD)。然而,它们有限的使用了大量被编码在基础词汇知识(LKB)中的关系信息。我门提出了一个通过同步集成表示和关系来提升WSD的方法(EWISER),一种神经监督结构,能够挖掘丰富的知识,通过使用神经结构来编码从LKB中得到的图信息,并利用预先训练的同步向量,让网络可以同步预测不在训练集中的情况。作为结果,我们达到了SOTA在几乎考虑到的评估集上,也是一次突破,第一次,80%的壁垒在连接所有标准的所有单词英语WSD评估基准。在多语言的全词WSD中,我门只通过在英文训练来报告SOTA结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值