simcse用pytorch计算loss

该文描述了一个使用PyTorch在GPU上执行的序列操作过程,包括创建索引序列,计算128768扩充后的128128相似度矩阵,应用cosine_similarity函数,减去对角线元素并除以lambda值。接着,利用这些相似度矩阵计算交叉熵损失,其中标签被用作分类,第0个元素仅匹配第1类。
摘要由CSDN通过智能技术生成

1、
idxs = torch.arange(0, y_pred.shape[0], device=‘cuda’)
y_true = idxs + 1 - idxs % 2 * 2
排序加上2以内反序,得到【1,0,3,2】的序列

2、
128768的扩充,最后计算成128128的相似度
similarities = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=2)
similarities = similarities - torch.eye(y_pred.shape[0], device=‘cuda’) * 1e12
similarities = similarities / lamda

3、
最后一步,计算loss时把label当成分类计算,及第0个仅分类到第1类,即维度不同的loss计算
loss = F.cross_entropy(similarities, y_true)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值