Fractional Programming for Communication Systems—Part I: Power Control and Beamforming

II. FRACTIONAL PROGRAMMING

FP是一类涉及分数项(或比率)的优化问题。本节回顾了处理单比率问题的FP的经典技术,然后介绍了一种能够处理多比率问题的新的二次变换技术。

A. Classic Techniques

我们首先考虑单比率FP问题。给定一个非空约束集 X ⊆ R d \mathcal {X}\subseteq \mathbb {R}^d XRd,一个非负函数 A ( x ) A(\mathbf {x}) A(x) R d → R + \mathbb {R}^d\rightarrow \mathbb {R}_+ RdR+,一个正函数 B ( x ) B(\mathbf {x}) B(x) R d → R + + \mathbb {R}^d\rightarrow \mathbb {R}_{++} RdR++,其中 d ∈ N d\in \mathbb {N} dN,定义一个单比(最大化)FP问题为

maximize x   A ( x ) B ( x ) subject to   x ∈ X . \begin{align} \underset{\mathbf {x}}{\text{maximize}} \quad \ & \frac{A(\mathbf {x})}{B(\mathbf {x})} \tag{1a}\\ \text{subject to} \quad \ & \mathbf {x} \in \mathcal {X}. \tag{1b} \end{align} xmaximize subject to B(x)A(x)xX.(1a)(1b)

上面的单比FP问题一般不是凸的。

处理FP的传统方法是将问题重新格式化为分子和分母解耦的形式,从而使 A ( x ) A(\mathbf {x}) A(x) 凹函数, B ( x ) B(\mathbf {x}) B(x) 是凸函数, X \mathcal X X 是标准形式表示的凸集的情况——称为 concave-convex FP 问题。下面介绍的两种经典技术就属于这种类型的方法。

  1. Charnes-Cooper Transform

这种经典的FP技术是由早期的作品[20],[21]提出的。它引入了两个新的变量
z = 1 B ( x ) \begin{equation} z = \frac{1}{B(\mathbf {x})} \tag{2} \end{equation} z=B(x)1(2)


q = x B ( x ) , \begin{equation} \mathbf {q} = \frac{\mathbf {x}}{B(\mathbf {x})}, \tag{3} \end{equation} q=B(x)x,(3)

然后将单比率问题(1)重新表述为

maximize z ,   q     z A ( q z ) subject to     z B ( q z ) ≤ 1     z ∈ Z     q ∈ Q \begin{align} \underset{z,\,\mathbf {q}}{\text{maximize}} \quad \ \quad \ & z A\left(\frac{\mathbf {q}}{z}\right) \tag{4a}\\ \text{subject to} \quad \ \quad \ & z B\left(\frac{\mathbf {q}}{z}\right)\leq 1 \tag{4b}\\ \quad \ \quad \ & z \in \mathcal {Z} \tag{4c}\\ \quad \ \quad \ & \mathbf {q} \in \mathcal {Q} \tag{4d} \end{align} z,qmaximize  subject to      zA(zq)zB(zq)1zZqQ(4a)(4b)(4c)(4d)

式中, Z \mathcal {Z} Z Q \mathcal {Q} Q 分别为 z z z q \mathbf {q} q 根据式(2)和式(3)的取值范围, x ∈ X \mathbf x\in \mathcal X xX。在解决了上述问题后,原始解 x \mathbf x x 可以通过(2)或(3)恢复。这种变换首先由Charnes和Cooper针对仿射情况提出[20],然后由Schaible[21]扩展到一般的凹凸情况。

注意,这种技术通过将 B ( x ) B(\mathbf {x}) B(x) 移动到约束(4b),同时在目标中保留 A ( x ) A(\mathbf {x}) A(x),从而解耦了分母和分子。如果问题是一个凹凸FP,则重构式(4)是一个可以有效求解的凸问题。注意,在Charnes-Cooper变换中:(i)引入了附加约束;(ii) Z \mathcal {Z} Z Q \mathcal {Q} Q 需要表征,这可能不容易做到。我们还注意到,尽管该技术在单比情况下工作得很好(实际上收敛于凹凸单比FP问题的全局最优解),但它不能轻易扩展到多比情况,例如,sum-of-ratios problem问题。

  1. Dinkelbach’s Transform:

这种经典的技术,首次在[22]中提出,将单比率问题(1)重新表述为
maximize x   A ( x ) − y B ( x ) subject to   x ∈ X \begin{align} \underset{\mathbf {x}}{\text{maximize}} \quad \ & A(\mathbf {x})-yB(\mathbf {x}) \tag{5a}\\ \text{subject to} \quad \ & \mathbf {x}\in \mathcal {X} \tag{5b} \end{align} xmaximize subject to A(x)yB(x)xX(5a)(5b)

使用一个新的辅助变量 y y y 进行迭代更新

y [ t + 1 ] = A ( x [ t ] ) B ( x [ t ] ) \begin{equation} y[t+1] = \frac{A(\mathbf {x}[t])}{B(\mathbf {x}[t])} \tag{6} \end{equation} y[t+1]=B(x[t])A(x[t])(6)

其中 t t t 是迭代索引。根据(6)交替更新 y y y 并在(5)中求解 x \mathbf {x} x,可以证明收敛性是保证的,因为每次迭代后 y y y 都是非递减的。特别地,当单比问题(1)是一个凹凸FP时,在(5)中对固定 y y y 优化 x x x 是一个凸问题;整体迭代算法实际上收敛于(1)的全局最优解。与Charnes-Cooper变换相比,Dinkelbach变换具有不引入额外约束的优势。

B. Proposed Quadratic Transform

FP的经典变换对单比问题很有效,但不能很容易地推广到多比FP问题。这是因为尽管这些经典变换具有原FP和变换后的问题具有相同最优解的性质,但变换后的问题的目标函数的最优值不一定与原FP目标函数值相同。因此,当涉及多个比率时,人们无法将变换单独应用于每个比率。

本文提出了一种新的变换,该变换以Dinkelbach变换为启发,但增加了目标函数值必须保持不变的约束条件。它之所以被命名为二次变换(quadratic transform),是因为它涉及二次项。

首先,在(1)式中对原FP目标函数进行重新变换时,我们表述了期望的变换后的目标函数必须具备的性质:

  • C1:(解耦)新目标的形式为 g ( x , y ) = f ( A ( x ) ) q 1 ( y ) + h ( B ( x ) ) q 2 ( y ) g(\mathbf {x},y)=f(A(\mathbf {x}))q_1(y) + h(B(\mathbf {x}))q_2(y) g(x,y)=f(A(x))q1(y)+h(B(x))q2(y),其中 y y y 是辅助变量。

  • C2:(等价解)变量 x ⋆ \mathbf {x}^\star x 使 A ( x ) / B ( x ) A(\mathbf {x})/B(\mathbf {x}) A(x)/B(x) 最大化当且仅当 x ⋆ \mathbf {x}^\star x 与一些 y y y 一起使 g ( x , y ) g(\mathbf {x},y) g(x,y) 最大化。

  • C3:(等价目标)令 y ⋆ = arg ⁡ max ⁡ y g ( x , y ) y^\star =\arg \max _y g(\mathbf x,y) y=argmaxyg(x,y) 对于某个 x \mathbf x x,那么对于这个 x \mathbf x x g ( x , y ⋆ ) = A ( x ) / B ( x ) g(\mathbf {x},y^ \star)=A(\mathbf {x})/B(\mathbf {x}) g(x,y)=A(x)/B(x)

  • C4:(凹性)对于固定的 x \mathbf x x,函数 g ( x , y ) g(\mathbf {x},y) g(x,y) y y y 是凹的,即 ∂ 2 g / ∂ y 2 ≤ 0 \partial ^2 g/\partial y^2\leq 0 2g/y20

以上四种条件都是自然启发的。C1和C2遵循经典FP变换的思想,通过 y y y 解耦 A ( x ) A(\mathbf {x}) A(x) A ( x ) A(\mathbf {x}) A(x) 的优化;C3与原始问题作了更强的等价性,其动机是期望应用于多比率问题;C4允许对固定 x \mathbf {x} x 的进行 y y y 凸优化。请注意,C3意味着C2,但反之则不然。实际上,Dinkelbach变换满足C1、C2和C4,但不满足C3。(具体来说,在最优情况下,根据(6),Dinkelbach变换 y ⋆ = A ( x ) / B ( x ) y^\star =A({\mathbf {x}})/B(\mathbf {x}) y=A(x)/B(x),因此其 g ( x , y ⋆ ) = 0 g(\mathbf {x},y^\star)=0 g(x,y)=0。)

本文提出了FP问题的一种新的二次变换,它满足所有这些条件C1-C4,其定理表示如下。

定理1(二次变换):二次变换

g ( x , y ) = 2 y A ( x ) − y 2 B ( x ) \begin{equation} g(\mathbf x, y) = 2 y\sqrt{ A(\mathbf x)} -y^2 B(\mathbf x) \tag{7} \end{equation} g(x,y)=2yA(x) y2B(x)(7)

满足条件C1-C4。更进一步,如果C4被强化为要求 ∂ 2 g / ∂ y 2 \partial ^2 g/\partial y^2 2g/y2 独立于y,那么任何满足C1-C4的 g ( x , y ) g(\mathbf x,y) g(x,y) 必须是这样的形式
g ( x , y ) = 2 ( t 1 y + t 2 ) A ( x ) − ( t 1 y + t 2 ) 2 B ( x ) \begin{equation} g(\mathbf x, y) = 2 (t_1 y + t_2) \sqrt{ A(\mathbf x)} - (t_1 y + t_2)^2 B(\mathbf x) \tag{8} \end{equation} g(x,y)=2(t1y+t2)A(x) (t1y+t2)2B(x)(8)

对于某些 t 1 ≠ 0 t_1 \ne 0 t1=0 和某些 t 2 ∈ R t_2\in \mathbb {R} t2R。因此,所提出的二次变换在 y y y 上的仿射变换是不失一般性的。

  • 14
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
分数阶控制系统是一种新兴的控制理论,它将整数阶微积分应用到控制系统中。与传统的整数阶控制系统不同,分数阶控制系统使用分数阶微积分来描述系统的动态行为。这种方法可以更加准确地描述非线性和非稳态控制系统,并具有更大的灵活性和适应性。 分数阶控制系统的核心是分数阶微积分方程。分数阶微积分方程是一种广义的微积分形式,可以描述非整数阶导数和积分的运算。在分数阶控制系统中,这种方程被用来建立系统的数学模型,并通过对模型进行分析和优化来设计控制器。 分数阶控制系统的数值实现是指将分数阶微积分方程转化为计算机可以处理的数值算法。由于分数阶微积分方程具有复杂的数学性质,对其进行数值计算是一项具有挑战性的任务。研究者们开发了各种各样的数值方法来解决这个问题,例如基于差分法、基于插值法、基于小波变换等方法。 分数阶控制系统的数值实现有许多应用领域。例如,在电力系统中,分数阶控制系统可以用来提高电网的稳定性和可靠性。在机器人控制中,分数阶控制系统可以用来改善机器人的运动控制和路径规划能力。在化学过程控制中,分数阶控制系统可以用来优化化学反应的速率和选择性。这些应用都需要将分数阶控制系统的理论转化为实际可行的数值算法,并在实际系统中进行验证和应用。 总之,分数阶控制系统是一种具有广泛应用前景的新兴控制理论。通过理解和研究分数阶控制系统的基础知识和数值实现方法,我们可以更好地理解和设计复杂的控制系统,并将其应用于实际问题中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WHS-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值