Chapter 4 Forward Kinematics

机器人的正向运动学是指根据其关节坐标θ计算其末端执行器框架的位置和方向。图4.1说明了3R平面开放链的正向运动学问题。链路长度为L1、L2和L3。

如图所示,选择一个原点位于基关节的固定框架{0},并假设末端效应器框架{4}已附着到第三个链接的尖端。末端执行器框架的笛卡尔位置(x,y)和方向φ作为关节角度(θ1,θ2,θ3)的函数,由下式给出

\begin{gathered}x =\quad L_1\cos\theta_1+L_2\cos(\theta_1+\theta_2)+L_3\cos(\theta_1+\theta_2+\theta_3), \left(4.1\right) \\ y=\quad L_{1}\sin\theta_{1}+L_{2}\sin(\theta_{1}+\theta_{2})+L_{3}\sin(\theta_{1}+\theta_{2}+\theta_{3}), \left(4.2\right) \\ \phi =\quad\theta_1+\theta_2+\theta_3. (4.3) \end{gathered}

如果只对末端执行器的(x,y)位置感兴趣,则将机器人的任务空间视为x–y平面,并且正向运动学仅由方程(4.1)和(4.2)组成。如果末端执行器的位置和方向都很重要,则正向运动学将由三个方程(4.1)-(4.3)组成。

虽然上面的分析可以只使用基本的三角函数来完成,但不难想象,对于更一般的空间链,分析可能会变得相当复杂。推导正运动学的一种更系统的方法可能涉及给每个连杆附加参考系;

在图4.1中,三个连杆参考坐标系分别标记为{1}、{2}和{3}。正运动学可以写成四个齐次变换矩阵的乘积:

T_{04}=T_{01}T_{12}T_{23}T_{34},\quad(4.4)其中

\begin{aligned}T_{01}&=\left[\begin{array}{cccc}\cos\theta_1&-\sin\theta_1&0&0\\\sin\theta_1&\cos\theta_1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right],\quad T_{12}&=\left[\begin{array}{cccc}\cos\theta_2&-\sin\theta_2&0&L_1\\\sin\theta_2&\cos\theta_2&0&0\\0&0&1&0\\0&0&0&1\end{array}\right],\\T_{23}&=\left[\begin{array}{cccc}\cos\theta_3&-\sin\theta_3&0&L_2\\\sin\theta_3&\cos\theta_3&0&0\\0&0&1&0\\0&0&0&1\end{array}\right],\quad T_{34}&=\left[\begin{array}{cccc}1&0&0&L_3\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right].\quad(4.5)\end{aligned}

观察到T_{34}是常数,并且每个剩余的T_{i-1.i}只依赖于关节变量\theta_i

作为这种方法的替代方案,让我们将 M 定义为当所有关节角度设置为零时帧 {4} 的位置和方向(机器人的“home”或“零”位置)。

M=\left[\begin{array}{cccc}1&0&0&L_1+L_2+L_3\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right],\quad(4.6)

现在将每个旋转关节轴视为零螺距螺杆轴 zero-pitch screw axis 。如果θ1和θ2保持在它们的零位置,那么对应于绕关节3旋转的螺杆轴可以在{0}框架中表示为

\mathcal{S}_3=\left[\begin{array}{c}\omega_3\\v_3\end{array}\right]=\left[\begin{array}{c}0\\0\\1\\0\\-(L_1+L_2)\\0\end{array}\right].

当机械臂在零点状态下直接向右伸展时,想象一个转台以ω3 = 1 rad/s的角速度绕关节3的轴旋转。在{0}原点处转盘上点的线速度v3以L1 + L2 units/s 的速率在y0负方向上。

代数上,v3 =−ω3 × q3,其中q3是关节3轴上的任意一点,在{0}中表示,例如,q3 = (L1 + L2, 0,0)。

螺杆轴S3可以用se(3)矩阵形式表示为

因此,对于任意θ3,前一章中螺旋运动的矩阵指数表示允许我们写出

T_{04}=e^{[\mathcal{S}_3]\theta_3}M\quad\text{(for }\theta_1=\theta_2=0).(4.7)

现在,对于θ1 = 0和任何固定的(但任意的)θ3,围绕关节2的旋转可以看作是对刚性(连杆2)/(连杆3)对施加螺旋运动,即

T_{04}=e^{[\mathcal{S}_2]\theta_2}e^{[\mathcal{S}_3]\theta_3}M\quad\text{(for}\theta_1=0),\quad(4.8)

其中[S3]和M与前面定义的一样,并且

[\mathcal{S}_2]=\left[\begin{array}{cccc}0&-1&0&0\\1&0&0&-L_1\\0&0&0&0\\0&0&0&0\end{array}\right].\quad(4.9)

最后,在保持θ2和θ3固定的情况下,绕关节1的旋转可以被视为对整个刚性三连杆组件施加螺旋运动。因此,对于(θ1,θ2,θ3)的任意值,我们可以写,

T_{04}=e^{[\mathcal{S}_1]\theta_1}e^{[\mathcal{S}_2]\theta_2}e^{[\mathcal{S}_3]\theta_3}M,\quad\quad\quad\quad(4.10) 其中

[\mathcal{S}_1]=\left[\begin{array}{cccc}0&-1&0&0\\1&0&0&0\\0&0&0&0\\0&0&0&0\end{array}\right].\quad(4.11)

因此,正向运动学可以表示为矩阵指数的乘积,每个指数对应于螺杆运动。

注意,后一种正向运动学推导不使用任何link reference frames;只有{0}和M必须定义。

在本章中,我们考虑一般开链的正运动学。一种广泛使用的开链正运动学表示依赖于Denavit-Hartenberg参数 Denavit–Hartenberg parameters (D-H参数),这种表示使用式(4.4)。

另一种表示依赖于指数乘积 product of exponentials (PoE)公式,对应于式(4.10)。

D–H表示的优点是,它需要最少数量的参数来描述机器人的运动学:对于n关节机器人,它使用3n个数字来描述机器人结构,使用n个数字来描述关节值。

PoE表示不是最小的(除了n个关节值外,它还需要6n个数字来描述n个螺杆轴),但它比D–H表示有优势(例如,不需要link frames),并且它是我们首选的正向运动学表示。

D-H表示法及其与PoE表示法的关系见附录C。

4.1 Product of Exponentials Formula

要使用PoE公式,只需要指定一个固定框架{s}(例如,在机器人的固定底座或便于定义参考框架的任何其他地方)和一个末端执行器处的框架{b},当机器人处于其零位置时,{b}由M描述。通常在每个连杆定义一个框架,但通常是在关节轴处;这些是D–H表示所需要的,它们对于显示机器人几何模型的图形渲染和定义连杆的质量特性非常有用,我们需要从第8章开始。

因此,当我们定义n关节机器人的运动学时,我们可以

  • 最小限度地使用框架{s}和{b},如果我们仅对运动学感兴趣
  • 将{s}作为框架{0},使用框架{i} 其中i = 1,…, n(连杆i在关节i处的坐标系),并在末端执行器处再使用一个坐标系{n + 1}(对应{b})。坐标系{n + 1}(即{b})相对于{n}是固定的,但它在一个更方便的位置来表示末端执行器的构型。在某些情况下,我们省略坐标系{n + 1},简单地将{n}称为末端执行器坐标系{b}。

4.1.1 First Formulation: Screw Axes in the Base Frame 第一种形式:螺旋轴在Base Frame

PoE公式背后的关键概念是将每个关节视为对所有向外的连杆 outward links 施加螺旋运动。为了说明这一点,考虑一个如图4.2所示的一般空间开链,由n个单自由度关节串联而成

若要应用PoE公式,必须选择固定的base frame{s}和连接到最后一个link的末端效应器框架{b} .通过将所有关节值设置为零,将机器人置于零位置,并指定每个关节的正位移方向(旋转关节为旋转,棱柱关节为平移)。设M \in SE(3)表示当机器人处于其零位置时末端执行器坐标系相对于fixed base frame的配置。

现在假设关节n移位到某个关节值θn。末端执行器坐标系M产生一个位移:

T=e^{|\mathcal{S}_n|\theta_n}M,\quad(4.12)

式中,T∈SE(3)为末端执行器坐标系的新构型,\mathcal{S}_n=(\omega_n,v_n)为固定基坐标系中关节n的螺旋轴。如果关节n是转动的(对应于螺距为零的螺旋运动),则ωn∈R3是关节轴n正方向上的单位矢量;

v_n=-\omega_n\times q_n 其中qn为关节轴n上任意一点,用固定基坐标系表示;θn是关节角。若关节n为移动关节,则ωn = 0, vn∈R3为正平移方向的单位向量,θn表示移动关节的伸/缩。

如果我们假设关节n - 1也允许变化,那么这就会对连杆n - 1施加一个螺旋运动(并扩展到连杆n,因为连杆n通过关节n连接到连杆n - 1)。末端执行器框架因此经历的位移:

T=e^{|\mathcal{S}_{n-1}|\theta_{n-1}}\left(e^{|\mathcal{S}_n|\theta_n}M\right).\quad\quad\quad\quad(4.13)

继续这个推理,现在允许所有的关节(θ1,…,θn)变化,可以得出

T(\theta)=e^{[\mathcal{S}_1]\theta_1}\cdots e^{[\mathcal{S}_{n-1}]\theta_{n-1}}e^{[\mathcal{S}_n]\theta_n}M.(4.14)

这是描述n自由度开链正运动学的指数积公式。具体来说,我们称式(4.14)为指数积公式的空间形式 space form,指的是螺旋轴是在固定的空间坐标系中表示的。

综上所述,利用PoE公式(4.14)的空间形式计算开链的正运动学,需要具备以下要素:

  • 机器人在起始位置时的末端执行器构型M∈SE(3);
  • 螺杆轴线S1、,Sn,表示在fixed base frame 中,对应于机器人处于其原始位置时的关节运动;
  • 关节变量 θ1, . . . , θn.

与D–H表示法不同,无需定义 link reference frames。当我们在下一章中研究速度运动学时,进一步的优势将显现出来。

4.1.2 Examples

   现在,我们使用PoE公式推导了一些常见空间开放链的正向运动学。

Example 4.1 (3R spatial open chain).

考虑图4.3中的3R开链,所示在其起始位置(所有关节变量设为零)。

 选择如图所示的固定坐标系{0}和末端执行器坐标系{3},用固定坐标系表示所有向量和齐次变换。正运动学有这样的形式

T(\theta)=e^{[\mathcal{S}_{1}]\theta_{1}}e^{[\mathcal{S}_{2}]\theta_{2}}e^{[\mathcal{S}_{3}]\theta_{3}}M,

式中,M∈SE(3)为机器人处于零位时的末端执行器框架构型。通过检验可以得到M为

M=\left[\begin{array}{cccc}0&0&1&L_1\\0&1&0&0\\-1&0&0&-L_2\\0&0&0&1\end{array}\right].

关节轴1的螺钉轴S1 = (ω1, v1)则由ω1 =(0,0,1)和v1 =(0,0,0)给出(固定的坐标系原点(0,0,0)对于位于关节轴1上的点q1是一个方便的选择)

为了确定关节2轴的螺旋轴S2,请注意关节2轴指向−y0方向,因此ω2 =(0,−1,0),选择q2 = (L1, 0,0),则v2 =−ω2 × q2 =(0,0,−L1)。

最后,要确定关节轴3的螺旋轴S3,请注意ω3 =(1,0,0)。选择q3 = (0,0, - L2),则v3 = - ω3 × q3 = (0, - L2, 0)。

综上所述,对于三个关节螺杆轴S1、S2和S3,我们有如下4 × 4矩阵表示:

[\mathcal{S}_1]\quad=\quad\left[\begin{array}{ccccc}0&-1&0&0\\1&0&0&0\\0&0&0&0\\0&0&0&0\end{array}\right],[\mathcal{S}_2]\quad=\quad\left[\begin{array}{ccccc}0&0&-1&0\\0&0&0&0\\1&0&0&-L_1\\0&0&0&0\end{array}\right],[\mathcal{S}_3]\quad=\quad\left[\begin{array}{ccccc}0&0&0&0\\0&0&-1&-L_2\\0&1&0&0\\0&0&0&0\end{array}\right].

将螺杆轴以以下表格形式列出会更方便:

Example 4.2 (3R planar open chain).

对于图4.1中的机器人,我们表示了末端执行器本体构型M(式(4.6)),螺杆轴Si为:

由于运动在x - y平面上,我们可以等效地将每个螺杆轴Si写成一个3维向量(ωz, vx, vy):

M作为SE(2)的元素:M=\left[\begin{array}{ccc}1&0&L_1+L_2+L_3\\0&1&0\\0&0&1\end{array}\right].

在这种情况下,正运动学将使用平面运动的简化矩阵指数(练习3.49)。

Example 4.3 (6R spatial open chain).

现在我们推导出图4.4中6R开链的正运动学。六自由度机械臂在机器人技术中扮演着重要的角色,因为它们具有最少的关节数量,可以使执行器在所有自由度下移动刚体,仅受机器人工作空间的限制。因此,六自由度机械臂有时被称为通用机械臂 

各关节轴的零点位置和正旋转方向如图所示。固定框架{s}和末端执行器框架{b}也被分配如图所示。末端执行器坐标系M在零点位置为

M=\left[\begin{array}{cccc}1&0&0&0\\0&1&0&3L\\0&0&1&0\\0&0&0&1\end{array}\right]\quad(4.15)

关节1的螺杆轴方向为ω1 =(0,0,1)。对于位于关节轴1上的点q1,最方便的选择是原点,使得v1 = (0,0,0) 。

关节2的螺钉轴在固定框架的y方向上,因此ω2 =(0,1,0)。选择q2 =(0,0,0),我们得到v2 =(0,0,0)。

关节3的螺杆轴线在ω3 =(−1,0,0)方向,选择q3 =(0,0,0),则v3 =(0,0,0)。

关节4的螺杆轴线在ω4 =(−1,0,0)方向,选择q4 = (0, L, 0)得到v4 = (0,0, L)。

关节5的螺杆轴方向ω5 =(−1,0,0);选择q5 = (0,2L, 0)导致v5 = (0,0,2L)。 

关节6的螺钉轴方向为ω6 = (0,1,0);选择q6 =(0,0,0)得到v6 =(0,0,0)

综上所述,螺杆轴\mathcal{S}_i=(\omega_i,v_i),i=1,\ldots,6,如下:

Example 4.4 (An RRPRRR spatial open chain).

在这个例子中,我们考虑图4.5的六自由度RRPRRR空间开放链。零位置的末端坐标系由下式给出

M=\left[\begin{array}{cccc}1&0&0&0\\0&1&0&L_1+L_2\\0&0&1&0\\0&0&0&1\end{array}\right].

下表列出了螺杆轴Si=(ωi,vi):

注意,第三个关节是棱柱形的,因此ω3=0,v3是正平移方向上的单位向量。

Example 4.5 (Universal Robots' UR5 6R robot arm).

通用机器人的UR5 6R机械臂如图4.6所示。每个接头都由一个无刷电机直接驱动,该电机与100∶1零齿隙谐波传动齿轮zero-backlash harmonic drive gearing相结合,大大增加了接头处的可用扭矩,同时降低了接头的最大速度。

图4.6显示了螺杆轴线S1,...,S6,当机器人处于其零位置时。位于零位置的末端效应器坐标系{b}由下式给出

M=\left[\begin{array}{cccc}-1&0&0&L_1+L_2\\0&0&1&W_1+W_2\\0&1&0&H_1-H_2\\0&0&0&1\end{array}\right].

下表列出了螺杆轴Si=(ωi,vi):

作为正向运动学的一个例子,设置θ2=-π/2和θ5=π/2,所有其他关节角都等于零。那么末端执行器的配置为

其中e^{0}=I.求值,我们得到

e^{-|\mathcal{S}_2|\pi/2}=\left[\begin{array}{cccc}0&0&-1&0.089\\0&1&0&0\\1&0&0&0.089\\0&0&0&1\end{array}\right],\quad e^{|\mathcal{S}_5|\pi/2}=\left[\begin{array}{cccc}0&1&0&0.708\\-1&0&0&0.926\\0&0&1&0\\0&0&0&1\end{array}\right],

这里的线性单位是米,那么

T(\theta)=e^{-[\mathcal{S}_2]\pi/2}e^{[\mathcal{S}_5]\pi/2}M=\left[\begin{array}{ccccc}0&-1&0&0.095\\1&0&0&0.109\\0&0&1&0.988\\0&0&0&1\end{array}\right]如图4.7所示。

4.1.3 Second Formulation: Screw Axes in the End-Effector Frame 第二种形式:末端执行器坐标系中的螺旋轴

矩阵恒等式e^{M^{-1}PM}=M^{-1}e^{P}M(命题 3.10)也可以表示为 Me^{M^{-1}PM}=e^{P}M.从先前导出的指数公式乘积的最右边项开始,如果我们反复应用这一点,然后经过n次迭代后,我们得到:

其中每个[Bi]由M^{-1}[\mathcal{B}_i]M给出,即\mathcal{B}_i~=~[\mathrm{Ad}_{M^{-1}}]\mathcal{S}_i,~i~=~1,\ldots,n.方程(4.16)是指数乘积公式的替代形式,当机器人处于其零位置时,将关节轴表示为末端执行器(身体)框架 end-effector (body) frame 中的螺杆轴Bi。我们称方程(4.16)为指数乘积公式的体形式 body form

值得思考的是,在空间形式 space-form 的PoE公式(方程(4.14))和体形式 body-form 的公式(Equation (4.16))中表达的变换的顺序。在空间形式中,M首先由最远端的关节转变,逐渐向内移动到更近端的关节。注意,用于更近端关节的螺钉轴线的固定空间框架表示不受远端关节处的关节位移的影响(例如,关节3的位移不影响关节2在空间框架中的螺钉轴线表示)。

在身体形态中,M首先由第一关节转化,逐渐向外移动到更远端的关节。用于更远端关节的螺钉轴线的身体框架表示不受近端关节处的关节位移的影响(例如,关节2的位移不影响关节3在身体框架中的螺钉轴线表示)

因此,我们只需要在机器人的零位置确定螺杆轴是有道理的:任何Si都不受更多远端变换的影响,任何Bi都不受更近端变换的影响。

Example 4.6 (6R spatial open chain).

我们现在用第二种形式表达图4.4中6R开放链的正向运动学,

T(\theta)=Me^{|\mathcal{B}_1|\theta_1}e^{|\mathcal{B}_2|\theta_2}\cdots e^{|\mathcal{B}_6|\theta_6}.

M仍然与方程(4.15)中的相同,该方程是从链处于其零位置的固定框架中看到的末端执行器框架。每个关节轴的螺旋轴,相对于末端执行器框架的零位表示,如下表所示

Example 4.7 (Barrett Technology's WAM 7R robot arm). 

Barrett WAM 机械臂前沿应用-教育视频-搜狐视频 (sohu.com)

额外的(第七)关节意味着机器人对于在SE(3)中定位其末端执行器框架的任务是多余的;

通常,对于机器人工作空间中给定的末端执行器配置,在机器人的七维关节空间中有一组一维的关节变量可以实现该配置。这种额外的自由度可以用于避障或优化一些目标函数,例如最小化将末端执行器保持在该配置所需的电机功率。

此外,WAM的一些关节由放置在机器人底座的电机驱动,从而减少了机器人的运动质量。扭矩通过缠绕在接头和电机卷筒上的电缆从电机传递到接头。由于移动质量减少,电机扭矩要求降低,允许低(电缆)传动比和高速。这种设计与UR5的设计形成了鲜明对比,UR5中每个接头的电机和谐波驱动齿轮直接位于接头处。

图4.8示出了WAM的末端执行器框架螺旋轴线B1、…、,B7当机器人处于其零位置时。末端效应器帧{b}零位为

M=\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&L_1+L_2+L_3\\0&0&0&1\end{array}\right].

螺杆轴Bi = (ωi, vi)列于下表:

图4.9显示了θ2 = 45◦,θ4 = - 45◦,θ6 = - 90◦以及所有其他关节角度为零的WAM臂,给出

T(\theta)=Me^{[B_2]\pi/4}e^{-[B_4]\pi/4}e^{-[B_6]\pi/2}=\left[\begin{array}{cccc}0&0&-1&0.3157\\0&1&0&0\\1&0&0&0.6571\\0&0&0&1\end{array}\right].

4.2 The Universal Robot Description Format

通用机器人描述格式(URDF)是机器人操作系统(ROS)使用的一种XML(可扩展标记语言)文件格式,用于描述机器人的运动学、惯性特性和link几何形状。一个URDF文件描述了机器人的关节和link:

  • Joints.关节连接两个链接:父链接和子链接。一些可能的关节类型包括移动关节、转动关节(包括关节限制)、连续关节(没有关节限制的转动关节)和固定关节(不允许任何运动的虚拟关节)。每个关节都有一个原点帧,当关节变量为零时,原点帧定义了子链接帧相对于父链接帧的位置和方向。原点在关节轴上。每个关节都有一个轴3维向量,在子连杆的坐标系中表示的单位向量,对于旋转关节是正旋转方向,对于移动关节是正平移方向。
  • Links. 虽然关节完全描述了机器人的运动学,但链接定义了其质量特性。在第8章中,当我们开始研究机器人的动力学时,就开始需要这些了。链接的元素包括其质量;原点框架,所述原点框架定义在所述链接的质心处的框架相对于上述链接的关节框架的位置和方向;以及惯性矩阵,相对于连杆的质心框架,由对角线上或上方的六个元素指定。(正如我们将在第8章中看到的,刚体的惯性矩阵是一个3×3对称正定矩阵。由于惯性矩阵是对称的,因此只需要定义对角线上和对角线上方的项。)

请注意,大多数连杆links都有两个刚性连接的frames:第一个frame位于joint(由将连link连接到其父连杆的joint元素定义),第二个框架位于link质心(由连杆元素定义)。

URDF文件可以表示任何具有树状结构的机器人。这包括串行链式机械臂和机械手,但不包括Stewart平台或其他具有闭环的机构。具有树形结构的机器人示例如图4.10所示。

帧{b}相对于帧{a}的方向使用滚转-俯仰-偏航坐标表示:首先,绕固定的xa轴滚转roll;然后是关于固定的ya轴的pitch;然后绕固定的za轴偏转yaw。

UR5机械臂的运动学和质量特性(图4.11)在下面的URDF文件中定义,该文件演示了关节元素(父元素、子元素、原点和轴)和连杆元素(质量、原点和惯性)的语法。URDF需要在每个关节处定义一个帧,因此除了固定的基础帧{0}(即{s})和末端效应器帧{7}(如{b})外,我们还定义了帧{1}至{6}。图4.11给出了完整编写URDF所需的额外信息。

尽管URDF中的关节类型被定义为“连续”,但UR5关节实际上有关节限制;为了简单起见,这里省略了它们。这里列出的质量和惯性特性并不准确。

除了上述特性之外,URDF还可以描述机器人的其他特性,例如其视觉外观(包括连杆的几何模型)以及可用于运动规划算法中的碰撞检测的连杆几何形状的简化表示。

4.3 Summary

  • 给定一个具有固定参考系{s}和连接到其最后一个link上的某个点的参考系{b}的开放链,——该参考系被称为末端效应器框架——正向运动学是从 关节值θ 到 {b}在{s}中的位置和方向 的映射T(θ)。
  • 在Denavit–Hartenberg表示中,开放链的正向运动学是根据连接到每个连杆的参考系之间的相对位移来描述的。如果链接帧被依次标记为{0}、…、{n+1},其中{0}是固定框架{s},{i}是在关节i处连接到链接i的框架(其中i=1,…,n),并且{n+1}是末端效应框架{b},则正向运动学表示为T_{0,n+1}(\theta)=T_{01}(\theta_1)\cdots T_{n-1,n}(\theta_n)T_{n,n+1}。其中θi表示关节i变量,Tn,n+1表示{n}中末端效应器框架的(固定)配置。如果末端效应器框架{b}选择与{n}重合,则我们可以省去帧{n+1}。
  • Denavit–Hartenberg约定要求分配给每个link的参考框架遵守严格的约定(见附录C)。根据该约定,link坐标系{i−1}和{i}之间的链路帧变换T_{i-1,i}可以仅使用四个参数(Denavit–Hartenberg参数)进行参数化。其中三个参数描述运动学结构,而第四个是关节值。四个数字是表示两个连杆框架之间位移所需的最小值
  • 正运动学也可以表示为指数的乘积(空间形式):T(\theta)=e^{[\mathcal{S}_1]\theta_1}\cdots e^{[\mathcal{S}_n]\theta_n}M,其中,Si=(ωi,vi)表示与沿关节i的正运动相关的螺旋轴,用固定的框架{s}坐标表示,θi是关节变量,M∈SE(3)表示当机器人处于其零位置时,端效应框架{b}的位置和方向。没有必要定义单独的链接框架;只需要定义M和螺杆轴线S1、,Sn。
  • 指数积公式也可以写成等效体形式body form,T(\theta)=Me^{[B_{1}]\theta_{1}}\cdots e^{[B_{n}]\theta_{n}},其中\mathcal{B}_i=[\mathrm{Ad}_{M^{-1}}]\mathcal{S}_i,\mathrm{~}i=1,\ldots,n;\mathrm{~}\mathcal{B}_i=(\omega_i,v_i)是与关节轴i相对应的螺杆轴,用{b}表示,机器人处于其零位置。
  • 通用机器人描述格式(URDF)是机器人操作系统和其他软件使用的一种文件格式,用于表示通用树状机器人机构(包括串行链)的运动学、惯性特性、视觉特性和其他信息。URDF文件包括连接父链接和子链接并完全指定机器人运动学的关节描述,以及指定其惯性特性的link描述。

4.5 Notes and References

关于机器人运动学的文献非常广泛,除了极少数例外,大多数方法都基于[34]中最初提出并在附录C中总结的Denavit–Hartenberg(D–H)参数。我们的方法基于Brockett在[20]中首次提出的指数乘积(PoE)公式。PoE公式的计算方面在[132]中进行了讨论。

附录C还详细说明了PoE公式相对于D–H参数的许多优点,例如,消除了link参考系,对旋转和棱柱关节进行了统一处理,以及将关节轴直观地解释为螺旋。这些优势远远抵消了D–H参数的唯一优势,即它们构成了一个极小集。此外,应该注意的是,当使用D–H参数时,有不同的约定来分配链接帧,例如,一些方法将关节轴与link frame的x轴对齐,而不是像我们所做的那样与z轴对齐。为了完整描述机器人的正向运动学,需要同时指定 link frame 和随附的D–H参数。

总之,除非使用最小参数集来表示关节的空间运动是至关重要的,否则没有令人信服的理由选择D-H参数而不是PoE公式。在下一章中,可以提出一个更强有力的案例,选择PoE公式来模拟正运动学。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值