问题A:自动地震水平跟踪
随着我国经济和社会的发展,地质工作的重要性也在不断增加。地震资料解释是地震勘探工程的一个重要阶段,它可以明确油气勘探的地下构造特征,为油气勘探提供良好、有利的储层;准确的地层信息是地震资料解释的基础,是储量预测的重要依据。地震水平跟踪是地震数据解释的关键技术之一,一种较好的地震水平跟踪方法可以大大提高地震数据解释的效率和准确性。
地震勘探的主要目标是获取地下结构岩性和储层的信息,由于主地层界面一般是良好的波阻抗界面,地震波在地下介质中传播时受到地层界面的影响,最终表现出均质地震反射轴的形态、强度、频率和连续性等不同的地震反射特征。地层界面的形状和埋深等结构信息。由于这类结构信息是地震资料中最直观、最容易使用的信息,自地震勘探技术诞生以来,从地震资料中提取结构信息已成为地震勘探的重要目标之一。
在反射地震数据中,地震波阻抗界面通常对应于地层界面或岩性界面,但岩性界面并不能总是形成波阻抗界面,只有在波阻抗差足够大的相邻地层中才能形成波阻抗界面。虽然不同地质时代形成的地层的岩性通常不同,但只有通过数百万年的沉积压实和沉积间断的交替,才能产生岩石物理性质的差异
(密度、孔隙度等)在相邻地层之间,岩性和岩石物理性质(差异)的结合将形成显著的波阻抗差异,因此,地震剖面上的地震反射事件轴通常对应于沉积的等时面,而不是宏观的岩性界面。根据这一理论,地震事件轴所表示的地层界面是地层沉积过程的不连续性,由于其相对同步,该沉积不连续性与地层的构造特征基本一致,因此,地震事件轴是识别地层界面的主要标志。地震事件轴的空间分布特征和时域变化特征是水平解释的主要依据。地震事件轴也可用于获取地层倾角和方位角等信息。
在二维地震勘探时代和三维地震勘探早期,地震资料的水平解释主要是单层, 即从地震剖面中选择若干与强地层反射界面相对连续性良好的地震事件轴进行跟踪。由于这种层数解释方法效率低,在地震剖面上容易追踪的地震事件轴的数量较少,可得到的层数有限,导致传统的地震构造解释模型无法获得详细的地质构造信息,因此对地质构造特征的详细描述不够清楚。也就是说,传统的地震层解释方法忽略或浪费了大量的地震信息,在准确性和效率方面都无法满足现代地震结构解释和地质综合研究的要求。随着三维地震勘探的发展,特别是高密度地震勘探技术,获得的地震资料的精度越来越高,地震资料的数量越来越多,从地震资料中自动提取结构、岩性、流体等信息已成为现代地震资料解释进展的关键,这也是一个目标:地球物理学家和地质学家正在努力争取。
现有的地震层跟踪方法通常由地震层解释器手动完成。在解释地震资料时, 对事件轴的跟踪是非常重要的。解释器主要基于地震波动力学和运动学特征,即振幅、同相或连续性、波形相似度三个标准和人工对比跟踪。人工水平跟踪是利用波形相似度手动跟踪二维地震剖面上底层的连续反射事件轴,得到水平线(地层界面),然后对所有水平线进行插值形成水平面。然而,人工水平跟踪人工成本需求很大,不仅耗时,而且对地震勘探的效率也有很大的影响。
为了克服跟踪时间效率低、结果可靠性差的问题,近年来研究者开始高度重视自动水平跟踪方法。自动水平跟踪方法是在地震迹道上搜索具有相似特征的“ 种子点”,搜索这些特征,并在满足条件后反复搜索下一个区域。该方法解决了当地形较复杂时,难以获得人工获取的水平信息,且获得的信息比人工获取的信息更准确的问题。
目前,有两种更好的自动水平跟踪标准,即基于波形特征的自动跟踪和基于相关性的自动跟踪。基于波形特征的自动跟踪是只寻找相似的波形结构(波峰、波谷、零交叉等)。在搜索时间窗中的特征点,但没有在地震迹线之间进行相关计算, 并将定义的波谷、波峰和交叉点逐一搜索。由于地下局部区域之间的连续性和稳定性反映在地震时间剖面上,这是地震波反射层与相邻地震航道上地震波反射层振幅的相似性和连续性。因此,基于相关的水平进行自动跟踪
算法中,以种子点为中心,根据相关的时间窗范围,选择一个地震通道,并将该段地震数据的地震数据与相邻通道的搜索时间窗中的地震数据相关联,如果在搜索时间窗中找到满足条件的特征点,则将该点固定为新的种子点,然后选取下一条轨迹在上面
请根据所附数据建立数学模型,以解决以下问题:
(1) 地震资料中噪声较大,请采用有效方法对附件数据进行去噪。
(2) 建立地震层自动跟踪模型的相关性或设计相应的新跟踪算法,并对附件数据进行跟踪。
(3) 建立基于波形特征的自动跟踪模型,或设计相应的新的跟踪算法,并对附件数据进行跟踪。
(4) 对两种自动跟踪模型(或算法)的结果进行评价,验证模型的合理性,分析实验数据与实际数据之间的误差,并做出合理的解释。
(5) 建立了一个基于相关性和波形的三维水平自动跟踪模型,并根据该算法中给出的数据实现了一种算法
附件,实现水平跟踪和故障数据的识别和分析。
记下
剖面由一组曲线组成,水平跟踪,是跟踪事件轴。纵断面上的事件轴是曲线, 多个事件轴条曲线构成视界。