2024年未来杯-高校大数据挑战赛 赛题浅析-快速选题

赛题难度预估: A题:B题=5:3

 选题人数预估: A题:B题=1:4

赛题A:岩石的自动鉴定

该题主要涉及图像分类任务,核心是基于显微图像数据集对岩石进行分类。题目分为三个部分:  

1.建立沉积岩分类模型(基于颜色、纹理、亮度等特征)。

2.扩展到变质岩、沉积岩、火成岩分类,并优化模型(结合深度学习)。

3.使用改进后的模型对新数据进行测试,并进行细分类识别。

问题一分析:沉积岩分类模型

-数据:使用南京大学沉积岩教学薄片照片数据集,类别包括火山碎屑岩、砂岩、泥页岩、粉砂岩、灰岩、白云岩、硅质岩、蒸发岩等。

-特征选择:

  -颜色特征:HSV、RGB 直方图,颜色聚类等

  -纹理特征:GLCM(灰度共生矩阵)、LBP(局部二值模式)

  -亮度特征:统计图像亮度分布

-模型选择:

  - 传统方法:SVM、KNN、随机森林

  - 深度学习:CNN(ResNet、EfficientNet等)

-优化方向:

  - 数据增强(旋转、缩放、对比度增强等)

  - 迁移学习(如ResNet等预训练模型)

问题二分析:扩展到三大岩石分类

-数据:完整数据集,包含变质岩、沉积岩、火成岩。

-方法:

  -直接迁移问题一模型,测试泛化能力。

  -引入深度学习:

    - CNN 进行特征提取,如 ResNet、DenseNet

    - 结合传统特征(颜色、纹理)+ 深度学习特征

  -可能的融合策略:

    - 提取颜色、纹理等特征作为附加输入,与CNN的特征融合(多模态学习)

问题三分析:应用模型进行新数据测试

-步骤:

  1. 先用训练好的模型筛选“沉积岩”类别。

  2. 进一步分类(砂岩、泥页岩等)。

  3. 输出每类岩石数量,填写结果表格。

赛题B:新能源电动汽车的故障预警研究

该题涉及时序数据分析、故障诊断与预测建模,主要挑战是从历史行驶数据中提取有用信息,并建立有效的预测模型。

问题一分析:数据预处理与统计

-数据内容:

  - 车辆数据(车速、总电压、累计里程等)

  - 电机数据(电机温度、转矩、转速等)

  - 电池数据(单体电压、温度等)

-预处理方法:

  - 缺失值处理(插值、填充等)

  - 异常值检测(箱型图、Z-score、IQR)

-分析方向:

  - 统计 1-9 月故障报警次数(绘制趋势图)

  - 充电和用车规律(基于 SOC、电池温度等数据分析)

问题二分析:寻找故障的关键影响因素

-方法:

  - 相关性分析(皮尔逊相关、互信息)

  - 特征选择(随机森林、LASSO回归)

  - 关联规则挖掘(Apriori 算法)

  - 聚类(K-means,HDBSCAN)分析数据模式

问题三分析:故障预警模型

-建模方法:

  - 传统机器学习(决策树、随机森林、XGBoost)

  - 深度学习(LSTM、GRU 处理时间序列数据)

-模型评估:

  - 交叉验证(K-fold)

  - 评估指标(准确率、召回率、F1分数等)

问题四分析:第10个月的故障预测

-步骤:

  1. 用1-9月数据训练故障预测模型。

  2. 预测第10月的故障时刻和等级。

  3. 输出符合要求的预测结果(填入month_10.csv)。

问题五分析:优化建议

-充电建议:

  - 避免过充、过放,优化SOC区间

-用车建议:

  - 控制行驶速度,减少大电流放电

-维护建议:

  - 关注温度变化、提前检测异常情况

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值