本文将为大家带来详细的中青杯A题解题思路,以便大家能够在后续更好的完成解题。
A 题:康养城市建设
首先是数据收集,
数据来源:医疗设施数据来自海口市统计局历年统计公报(例如2018年末全市共有1028个卫生机构;2019年末共有1078个医疗卫生机构;2022年末增至1480个。养老机构数量暂无直接公开发布的年度数据,此处根据规划和历年报道估算(如2015年全市敬老院增加到31家,“十三五”期间新增养老机构42家。公园绿地数量为估算值(海口市建成区绿化覆盖率约40%,人均公共绿地面积保持在较高水平;但具体公园数官方未明确发布,这里按城市主要公园数量估计)。文化设施数量包括公共文化馆、图书馆、博物馆等单位总数估计值(例如海口市设有4个区级文化馆和1个市级图书馆,以及若干博物馆、美术馆等,合计约数十家)。
居民健康方面,人均预期寿命由2018年的77.6岁提升至2022年的79.6岁,并预计到2023年达到80岁;2021年妇幼健康指标(如孕产妇死亡率、婴儿死亡率等)已优于国家和省平均水平。环境质量方面,空气质量优良率保持在97%以上,2018年98.6%→2023年97.5%;年内一级优良天数持续位居全国重点城市前列;地表水和近岸海域水质达标率始终保持100%
A1. 康养资源分布的现状分析与优化需求
问题简介:
在城市不同区域内,医疗、养老、公园、文化设施等康养资源的空间分布往往不均,与居民健康水平之间可能存在不匹配,需要评估当前布局的合理性并提出优化需求
求解思路:
基于收集的海口城市的2018-2024年医疗设施(个)、养老机构(个)、公园绿地(个)、文化设施(个)、人均预期寿命、老龄化人口占比进行分析。首先可以对收集的数据进行必要的可视化,如下所示
表1:收集数据描述
各类设施增长率分析 | 2024年设施结构分析 | ||
时间段 | 2018-2024年 | ||
医疗设施年均增长率 | 6.74% | 医疗设施占比 | 91.02% |
养老机构年均增长率 | 9.78% | 养老机构占比 | 4.19% |
公园绿地年均增长率 | 4.28% | 公园绿地占比 | 2.69% |
文化设施年均增长率 | 2.60% | 文化设施占比 | 2.10% |
计算各资源数量与人均预期寿命之间的相关系数,初步判断哪些资源与寿命关联最强。
基于数据我们可以进行相关性分析
医疗设施与预期寿命相关系数: 0.9298
养老机构与预期寿命相关系数: 0.9480
公园绿地与预期寿命相关系数: 0.9434
文化设施与预期寿命相关系数: 0.8867
总设施数与预期寿命相关系数: 0.9338
通过结果,我们可以看出各指标之间具有较好的相关性,因此我们可以依次构建健康效益函数。
为了进一步分析,我们可以根据文献假设各类设施的单位建设成本(相对值)
unit_costs = [1.0, 3.0, 2.0, 2.5]; % 医疗、养老、公园、文化的相对成本
我们利用公式求解偏导数计算边际效益
医疗设施: 1.4788
养老机构: 14.6951
公园绿地: 1.5852
文化设施: -0.8685
医疗设施:每投入一单位成本,能提高约1.48 年预期寿命
养老机构:每单位成本带来约14.70 年的预期寿命增益(这里系数大、成本也高,但比值最高);
公园绿地:每单位成本带来约1.59 年增益;
文化设施:带来负效益(–0.87),说明在当前模型中,文化设施的增加反而与预期寿命略有负相关。
注释:下述为深度分析,想要追求一等奖或者稳定二等奖可以参考,仅仅想拿奖可以不考虑下述部分
基于问题中在此基础上,提出优化康养资源布局的初步思路。我们可以构建优化模型进行求解,求解最小成本下各项资源的分配情况。
各设施历史数据范围:
医疗设施: 最小1028, 最大1520, 当前1520
养老机构: 最小40, 最大70, 当前70
公园绿地: 最小35, 最大45, 当前45
文化设施: 最小30, 最大35, 当前35
综上所述,可以总结为
当前老龄化占比: 14.89%
当前总投入成本(相对值): 1907.50
最优资源配置方案:
医疗设施: 1488个 (90.18%), 当前: 91.02%, 变化: -32个
养老机构: 84个 (5.09%), 当前: 4.19%, 变化: +14个
公园绿地: 54个 (3.27%), 当前: 2.69%, 变化: +9个
文化设施: 24个 (1.45%), 当前: 2.10%, 变化: -11个
成本约束利用率: 100.0%
注释:下述为深度分析,想要追求一等奖可以参考,仅仅想拿奖可以不考虑下述部分
多目标优化方案:
医疗设施: 1540个 (91.88%), 变化: +20个
养老机构: 84个 (5.01%), 变化: +14个
公园绿地: 28个 (1.67%), 变化: -17个
文化设施: 24个 (1.43%), 变化: -11个
多目标成本约束利用率: 100.0%
注释:下述为深度分析,想要追求最高等奖可以参考,仅仅想拿奖可以不考虑下述部分
为了进一步研究未来的变换首先进行预测2025-2030年的老龄化情况,基于该情况进行
二次拟合模型
老龄化趋势预测:
2025年: 15.45%
2026年: 16.01%
2027年: 16.56%
2028年: 17.12%
2029年: 17.67%
2030年: 18.22%
基于老龄化动态的资源配置建议:
2025年最优配置 (老龄化15.45%, 预算系数1.02):
医疗设施: 1523个 (90.39%), 较2024年: +3个
养老机构: 84个 (4.98%), 较2024年: +14个
公园绿地: 54个 (3.20%), 较2024年: +9个
文化设施: 24个 (1.42%), 较2024年: -11个
成本利用率: 100.0%
2026年最优配置 (老龄化16.01%, 预算系数1.04):
医疗设施: 1559个 (90.59%), 较2024年: +39个
养老机构: 84个 (4.88%), 较2024年: +14个
公园绿地: 54个 (3.14%), 较2024年: +9个
文化设施: 24个 (1.39%), 较2024年: -11个
成本利用率: 100.0%
注释:下述为优化模型刚需,一等奖以及二等以上需要考虑灵敏度分析
A2. 康养城市综合评价模型的构建与应用
问题简介:
构建涵盖资源、健康、环境、经济等多维度的评价体系,对城市康养发展水平进行综合打分,为政策制定提供量化依据。
求解思路:
问题二本质为评价模型,类似于综测计算,需要进行权重系数选择+评价模型选择两部。具体的选择方案表可以见文末,我们首先需要从熵权法、信息量权数法、层次分析法(AHP)、变异系数法、CRITIC方法、最佳-最差方法(Best-Worst Method, BWM)中随机(评价模型中没有对错之分,以上各种模型均符合题目要求)选择一种即可作为问题二权重系数选择,并从主成分分析(PCA)、理想解法TOPSISVIKOR、ELECTREPROMETHEE数据包络分析(DEA)、灰色关联分析(Grey Relationa l Analysis)、秩和比(Rank Sum Ratio)、层次分析法(AHP)中随机(与上同理)选择一个作为评价模型主体。理论可实现9*9=81种完全不同的组合方案。
基于问题二收集数据,构建下述指标评价体系
一级指标 | 二级指标 |
康养资源 | 医疗设施(个) |
养老机构(个) | |
公园绿地(个) | |
文化设施(个) | |
居民健康 | 人均预期寿命 |
环境质量 | 年度淡水抽取量,总量(占内部资源的百分比) |
空气质量优良率% | |
碳排放 | |
经济发展水平 | 常住人口(万人) |
对于含有较多的一级指标首先使用KMO检验判断指标直接关系,通过检验使用PCAS降维,没通过指标使用t-sne降维。得到四列数据,对这四列数据建立 基于熵权法的理想解法评价模型进行评价