关于Python 使用 numba 加速图像遍历

项目场景:

在使用python 图像遍历时 使用 numba 的 jit 模块 加速处理,


问题描述:

例如下面这段代码,主要是遍历像素,但是由于图像 为 1920 * 1080 , 对于python 这种解释性语言来说,如果是图像序列,速度简直无法忍受,甚至达到 10s 一帧图像。
    for i in range(1080):
        for j in range(1920):
            if img_m[i][j][0] == 128 and img_m[i][j][1] == 0 and img_m[i][j][2] == 192 or img_m[i][j][0] == 0 and \
                    img_m[i][j][1] == 192 and img_m[i][j][2] == 128 or img_m[i][j][0] == 0 and img_m[i][j][1] == 192 and \
                    img_m[i][j][2] == 0:
                img_m[i][j][0] = 128
                img_m[i][j][1] = 128
                img_m[i][j][2] = 64

解决方案:

为了,解决这个问题,一 修改算法,当然有时候比较难想到,二 、不用python 了 C++ 多香,C++,使用指针和迭代器确实也会比较快。
但是使用 python 也有相应的解决方案。
使用 numba 库

numba库

官网

  • 加速 Python 函数
  • 专为科学计算而打造
  • 并行化您的算法
  • 便携式编译

光看官网介绍的这几个功能就很牛逼,我这里只是简单解决上面的问题。

import cv2
import time
from numba import jit     #使用jit 模块   pip install numba or conda install numba

path = "..."
path1 = "..."

#使用装饰器,jit 加速
@jit         # 就是这么一个简单的改变
def processImg_jit(img_m):
    for i in range(1080):
        for j in range(1920):
            if img_m[i][j][0] == 128 and img_m[i][j][1] == 0 and img_m[i][j][2] == 192 or img_m[i][j][0] == 0 and \
                    img_m[i][j][1] == 192 and img_m[i][j][2] == 128 or img_m[i][j][0] == 0 and img_m[i][j][1] == 192 and \
                    img_m[i][j][2] == 0:
                img_m[i][j][0] = 128
                img_m[i][j][1] = 128
                img_m[i][j][2] = 64
    return img_m
# 原始的
def processImg(img_m):
    for i in range(1080):
        for j in range(1920):
            if img_m[i][j][0] == 128 and img_m[i][j][1] == 0 and img_m[i][j][2] == 192 or img_m[i][j][0] == 0 and \
                    img_m[i][j][1] == 192 and img_m[i][j][2] == 128 or img_m[i][j][0] == 0 and img_m[i][j][1] == 192 and \
                    img_m[i][j][2] == 0:
                img_m[i][j][0] = 128
                img_m[i][j][1] = 128
                img_m[i][j][2] = 64
    return img_m
img = cv2.imread(path + "0000" + str(2621) + ".jpg")
t0 = time.time()
img = processImg(img)
t1 = time.time()
print("原始: ",t1 - t0)

t0 = time.time()
img = processImg_jit(img)
t1 = time.time()
print("加速:",t1 - t0)

在这里插入图片描述
速度差了20倍…


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FlyDremever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值