L2-SVM(双正则SVM)的对偶形式求解过程

1.众所周知,L2-SVM是SVM的改进算法之一,本人最近在对L2-SVM进行核化操作的时候对其dual形式进行了推导。

             L2-SVM算法如下:

                                                                                               (1)

                                                                           \xi _{i}∈(1,2,........n)

            首先先把上述算法转化为L2-SVM的拉格朗日乘子式L:

                                                     max L=\frac{1}{2} w^{T}w+\frac{C}{2}\sum_{i=1}^{n}\xi_{i}^{2}-\sum_{i=1}^{n}\alpha_{i} [y_{i}(w^{T}x_{i}+b)-1+\xi_{i}]\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2)  

            其中\sum_{i=1}^{n}\alpha_{i} [y_{i}(w^{T}x_{i}+b)-1+\xi_{i}],为L2-SVM的约束条件,而原L1-SVM中的\xi_{i}>0的约束条件,因为上述L2-SVM算法中的\xi_{i}^{2}的存在而不要求其大于0.至于为什么在第二项的系数取\frac{C}{2}的原因是为了便于求导的时候方便,看个人喜好也可以取C

            下面我们开始分别在L上对wb\xi _{i} 求偏导并分别令(3),(4),(5)等于0:

                                                              \frac{\alpha L}{\alpha w}=w^{T}-\sum_{i=1}^{n}\alpha _{i}y_{i}x{i}=0\cdot \cdot \cdot \cdot \cdot \cdot (3)   

                                                                                                                        ,所以有w=\sum_{i=1}^{n}\alpha _{i}y_{i}x{i}。 

                                                              \frac{\alpha L}{\alpha b}=-\sum_{i=1}^{n}\alpha _{i}y_{i}=0\cdot \cdot \cdot \cdot \cdot \cdot (4)

                                                                                                                        ,所以有\sum_{i=1}^{n}\alpha _{i}y_{i}=0

                                                             \frac{\alpha L}{\alpha \xi_{i}}=C\xi_{i}-\alpha_{i}=0\cdot \cdot \cdot \cdot \cdot \cdot (5)

                                                                                                                        ,所以有\xi_{i}=\frac{\alpha_{i}}{C}或者C=\frac{\alpha_{i}}{\xi_{i}}

                 把求得的w=\sum_{i=1}^{n}\alpha _{i}y_{i}x{i}\sum_{i=1}^{n}\alpha _{i}y_{i}=0以及(5)式代入L中,依次推导过程如下:

                               max L = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j}+\frac{C}{2}\sum_{i=1}^{n}\xi_{i}^{2}-\sum_{i=1}^{n}\alpha_{i}y_{i}(\sum_{j=1}^{n}\alpha_{j}y_{j}x_{j})x_{i}-\sum_{i=1}^{n}\alpha_{i}y_{i}b+\sum_{i=1}^{n}\alpha_{i}-\sum_{i=1}^{n}\alpha_{i}\xi_{i}                (6)

                 可知\sum_{i=1}^{n}\alpha _{i}y_{i}b为0,且第一项与第三项只是系数不一样,所以有:

                                      max L = -\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j}+\frac{C}{2}\sum_{i=1}^{n}\xi_{i}^{2}+\sum_{i=1}^{n}\alpha_{i}-\sum_{i=1}^{n}\alpha_{i}\xi_{i}                                        (7)

                 因为\xi_{i}=\frac{\alpha_{i}}{C},把其代入(7)式,且转为min L

                                         min L = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j}+\frac{1}{2C}\sum_{i=1}^{n}\alpha_{i}^{2}-\sum_{i=1}^{n}\alpha_{i}                                                        (8)

                 \sum_{i=1}^{n}\alpha_{i}^{2}可以看成\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}, 但是只当i=j时成立,否则\alpha_{i}\alpha_{j}=0,可以把其看成是一个对角矩阵,只有对角元素才有值,非对角元素全为0,所以最终的对偶形式为:

                                              min L = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}(\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j}+\frac{1}{C}\alpha_{i}\alpha_{j}E)-\sum_{i=1}^{n}\alpha_{i}

                              min L = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}(\alpha_{i}(y_{i}y_{j}x_{i}x_{j}+\frac{1}{C}\delta_{ij})\alpha_{j})-\sum_{i=1}^{n}\alpha_{i},且    \delta_{ij}=\left\{\begin{matrix} 1 , i=j& \\ 0,i\neq j & \end{matrix}\right.                                    (9)

                 

                                             

                        

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值