凸优化学习(二)对偶和SVM

本文深入探讨了凸优化中的对偶问题,从拉格朗日函数、对偶函数和对偶问题的定义出发,阐述了强弱对偶的解释。接着,文章介绍了支持向量机(SVM)的建模和求解,特别是SVM的对偶问题和SMO算法。通过对SVM的软间隔和核函数的讨论,展示了SVM如何处理线性不可分问题。
摘要由CSDN通过智能技术生成

4.4 对偶问题

对于有约束的优化问题。约束优化问题的一般形式为:

minimizesubject.tof0(x)fi(x)0fori=1,2,...,mhi(x)=0fori=1,2,...,p m i n i m i z e f 0 ( x ) s u b j e c t . t o f i ( x ) ≤ 0 f o r i = 1 , 2 , . . . , m h i ( x ) = 0 f o r i = 1 , 2 , . . . , p

拉格朗日函数

合并目标函数与约束条件。

L(x,λ,v)=f0(x)+mi=1λifi(x)+pi=1vihi(x) L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x )

其中,主变量为x,对偶变量为 λ0,v λ ≥ 0 , v

经过这种定义,一般约束问题转换为以下主问题:

p=minx(maxλ,vL(x,λ,v)) p ∗ = m i n x ( m a x λ , v L ( x , λ , v ) )

因为, maxλ,vL(x,λ,v)=f0(x)+maxλ,v(λTf(x)+vTh(x)) m a x λ , v L ( x , λ , v ) = f 0 ( x ) + m a x λ , v ( λ T f ( x ) + v T h ( x ) )

  • 当x在可行域内时, vTh(x)=0 v T h ( x ) = 0 λTf(x)0 λ T f ( x ) ≤ 0 的最大值为0,因此上式 maxλ,vL(x,λ,v)=f0(x) m a x λ , v L ( x , λ , v ) = f 0 ( x )
  • 当x不在可行域,在定义域D内时,如果 hi(x)0 h i ( x ) ≠ 0 ,可以令对应的 vi= v i = ∞ ,从而 maxλ,vL(x,λ,v)= m a x λ , v L ( x , λ , v ) = ∞ ,即 p= p ∗ = ∞ ,该问题不可行。如果 fi(x)0 f i ( x ) ≥ 0 ,也可以令对应的 λi= λ i = ∞ ,从而 maxλ,vL(x,λ,v)= m a x λ , v L ( x , λ , v ) = ∞ ,即 p= p ∗ = ∞ ,该问题不可行。

也就是,x在可行域时,主问题与原约束问题等价。当x不在可行域时,主问题返回 p= p ∗ = ∞ ,原问题不可行。综上,主问题与原问题等价。

对偶函数

定义对偶函数为:

g(λ,v)=minxD(L(x,λ,v))=minxD(f0(x)+f(x)Tλ+h(x)Tv) g ( λ , v ) = m i n x ∈ D ( L ( x , λ , v ) ) = m i n x ∈ D ( f 0 ( x ) + f ( x ) T λ + h ( x ) T v )

括号里的函数 θ(λ,v)=(f0(x)+f(x)Tλ+h(x)Tv) θ ( λ , v ) = ( f 0 ( x ) + f ( x ) T λ + h ( x ) T v ) 可以看作是 λ,v λ , v 的仿射函数( aTx+b a T x + b ) ,仿射函数是既凸且凹的。这里不妨认为是凹函数。根据凸函数的逐点最大性质,可以得到凹函数的逐点最小函数是凹函数。 g(λ,v) g ( λ , v ) θ(λ,v) θ ( λ , v ) 函数的逐点下确界,因此 g(λ,v) g ( λ , v ) 是凹函数 (与原函数的凹凸性质无关)。

注意,这里的x是属于定义域的

对偶函数提供了最优值的下界,证明如下:

如果 x~ x ~ 是一个可行点,则

g(λ,v)=minxDL(x,λ,v)L(x~,λ,v)=f0(x~)+λTf(x~)+vTh(x~)f0(x~)(1)(2)(3) (1) g ( λ , v ) = m i n x ∈ D L ( x , λ , v ) ≤ L ( x ~ , λ , v ) (2) = f 0 ( x ~ ) + λ T f ( x ~ ) + v T h ( x ~ ) (3) ≤ f 0 ( x ~ )

因此,当 x~ x ~ 取最优解时, g(λ,v)f0(x)=p g ( λ , v ) ≤ f 0 ( x ∗ ) = p ∗

对偶问题

定义对偶问题为:

maximumsubject.tog(λ,v)λi0
  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值