“如何分析计算出不同构的某阶无向树的棵数目”是离散数学中的一种很常见的题目,而且没有简单公式计算出来,只能通过枚举来得到。但是有一些方便枚举的方法。
首先同构的定义是图的属性不变,也就是点、边、度序列不变。那么可以利用这点知道图的一些属性。
比如一个 6 阶无向树,有 6 个顶点,5 条边。那么可以计算出度总和为 10。
这里强调一点,有些算法书里,树的度的定义和离散数学不同:离散数学是一个顶点接的边就是度,而某些算法书里,树的度指的是结点的子节点数量。这点要区分好。
计算出度总和为 10 之后,开始枚举各种可能:
第1点 | 第2点 | 第3点 | 第4点 | 第5点 | 第6点 |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 5 |
1 | 1 | 1 | 1 | 2 | 4 |
1 | 1 | 1 | 1 | 3 | 3 |
1 | 1 | 1 | 2 | 2 | 3 |
1 | 1 | 2 | 2 | 2 | 2 |
可以看到这里有 5 种可能。需要注意到这里还没有结束,还要考虑有些情况度序列的情况可能对应多个不同构的树。比如这里的第 4 个序列1 1 1 2 2 3
,对应两个不同构的树:2 个度为 2 的节点可能相邻,也可能不相邻,二者的树高不同。因为树同构的话,高度一定是相同的。
但是要知道序列对应树的情况必须要尝试画出来对应的树。这就是无可避免的了,画的时候需要注意树高,树高不变就是同构,如果一个度序列能画出两种树高的树,那么就是不同构的情况。
希望能帮到有需要的人~