《机器学习实战》 第十二章【使用FP-growth算法来高效发现频繁项集】

FP-Growth算法是韩嘉炜等人在2000年提出的关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。
在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。
——百度百科

算法描述

优缺点

  • 优点:一般要快于Apriori
  • 缺点:实现比较困难,在某些数据集上性能会下降
  • 使用数据类型:标称型数据

一般流程

  • 收集数据:任意方法
  • 准备数据:离散数据
  • 分析数据:任意方法
  • 训练算法:构建一个FP树,并对树进行挖掘
  • 使用算法:可用于识别经常出现的元素项,从尔用于制定决策、推荐元素或进行预测等应用

算法说明

步骤:
A.FP-tree构造:
1.扫描数据库DB一遍.得到频繁项的集合F和每个频繁项的支持度.把F按支持度递降排序,结果记为L.
2.创建FP-tree的根节点,记为T,并且标记为’null’.然后对DB中的每个事务Trans做如下的步骤.
根据L中的顺序,选出并排序Trans中的事务项.把Trans中排好序的事务项列表记为[p|P]
【其中p是第一个元素,P是列表的剩余部分.调用insert_tree([p|P],T).】
如果T有一个子结点N,其中N.item-name=p.item-name,则将N的count域值增加1;
否则,创建一个新节点N,使它的count为1,使它的父节点为T,并且使它的node_link和那些具有相同item_name域串起来.
如果P非空,则递归调用insert_tree(P,N).

B.树挖掘:
调用FP-growth(Tree,null).
procedure FP-Growth ( Tree, x)
{
(1)if (Tree只包含单路径P) then
(2) 对路径P中节点的每个组合(记为B)
(3) 生成模式B并x,支持数=B中所有节点的最小支持度
(4) else 对Tree头上的每个ai,do
{
(5) 生成模式B= ai 并 x,支持度=ai.support;
(6) 构造B的条件模式库和B的条件FP树TreeB;
(7)if TreeB != 空集
(8)then call FP-Growth ( TreeB , B )
}
}

一个栗子

# coding:utf-8
from numpy import *
 
"""
FP-growth寻找频繁项集
"""
 
 
# 加载数据集
def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat
 
 
# 将数据集转换为set类型
def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        retDict[frozenset(trans)] = 1
    return retDict
 
 
# 树节点
class treeNode:
    # name: 节点名称
    # count: 出现次数
    # nodeLink: 节点链接
    # parent: 父节点
    # children: 子节点集
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode
        self.children = {}
 
    # 增加节点出现次数
    def inc(self, numOccur):
        self.count += numOccur
 
    # 打印此节点为树根的树
    def disp(self, ind=1):
        print('  ' * ind, self.name, ' ', self.count)
        for child in self.children.values():
            child.disp(ind + 1)
 
 
# 创建FP树
def createTree(dataSet, minSup=1):
    headerTable = {}
    # 第一次遍历数据集
    # 获取单个元素的频率
    for trans in dataSet:
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
    # 去除不满足最小支持度的单个元素
    for k in list(headerTable.keys()):
        if headerTable[k] < minSup:
            del (headerTable[k])
    # 频繁项集
    # freqItemSet: {'p', 'v', 'u', 'q', ...}
    freqItemSet = set(headerTable.keys())
    # 无频繁项就返回
    if len(freqItemSet) == 0:
        return None, None
    # 扩展头指针表
    # 添加指向每种类型第一个元素的指针(节点链接)
    # headerTable: {'j': [1, None], 'p': [2, None], 'r': [3, None], ...}
    for k in headerTable:
        headerTable[k] = [headerTable[k], None]
    # 创建根节点
    retTree = treeNode('Null Set', 1, None)
    # 第二次遍历数据集
    # 构建FP树
    for tranSet, count in dataSet.items():
        # tranSet: frozenset({'h', 'p', 'z', 'j', 'r'})
        # count: 1
        localD = {}
        # 如果单个元素是频繁项,则加入localD列表
        for item in tranSet:
            if item in freqItemSet:
                localD[item] = headerTable[item][0]
        # localD: {'r': 3, 'j': 1, 'z': 5, 'h': 1, 'p': 2}
        if len(localD) > 0:
            # 排序
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
            # 更新FP树
            updateTree(orderedItems, retTree, headerTable, count)
    return retTree, headerTable
 
 
# 更新FP树函数
def updateTree(items, inTree, headerTable, count):
    # 判断排序后列表的第一个元素是否已经是根节点的子节点
    if items[0] in inTree.children:
        # 添加出现次数
        inTree.children[items[0]].inc(count)
    else:
        # 创建根节点的子节点
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        # 更新头指针表的节点链接
        if headerTable[items[0]][1] == None:
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    # 列表元素长度大于1
    # 递归调用更新FP树函数
    if len(items) > 1:
        updateTree(items[1::], inTree.children[items[0]], headerTable, count)
 
 
# 更新头指针表的节点链接的函数
def updateHeader(nodeToTest, targetNode):
    # 将元素放在指针链表的最后
    while (nodeToTest.nodeLink != None):
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode
 
 
# 寻找节点basePat的所有前缀路径
# treeNode: 头节点表的basePat的指针指向元素
def findPrefixPath(basePat, treeNode):
    condPats = {}
    # 有指向的元素
    while treeNode != None:
        prefixPath = []
        # 回溯父节点,寻找前缀路径
        # prefixPath: ['r', 't', 'x', 'z']
        ascendTree(treeNode, prefixPath)
        # 路径长度大于1,不是单个元素
        if len(prefixPath) > 1:
            # 添加进condPats,记录路径的出现次数
            condPats[frozenset(prefixPath[1:])] = treeNode.count
        # 继续寻找basePat为结尾的前缀路径
        treeNode = treeNode.nodeLink
    # condPats: {frozenset({'z'}): 1, frozenset({'s', 'x'}): 1, frozenset({'x', 'z'}): 1}
    return condPats
 
 
# 单个节点回溯,寻找前缀路径
def ascendTree(leafNode, prefixPath):
    if leafNode.parent != None:
        prefixPath.append(leafNode.name)
        ascendTree(leafNode.parent, prefixPath)
 
 
# 根据FP树寻找频繁项集
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
    # 头指针表排序
    # bigL: ['h', 'j', 'u', 'v', 'w',...]
    bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1][0])]
    for basePat in bigL:
        newFreqSet = preFix.copy()
        newFreqSet.add(basePat)
        print('finalFrequent Item: ', newFreqSet)
        freqItemList.append(newFreqSet)
        # 以basePat为节点的所有前缀路径
        # condPattBases: {frozenset({'z', 'r', 'p'}): 1, ...}
        condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
        print('condPattBases :', basePat, condPattBases)
        # 以当前元素的所有前缀路径,创建条件FP树
        myCondTree, myHead = createTree(condPattBases, minSup)
        print('head from conditional tree: ', myHead)
        # 根据条件FP树和条件头指针表,递归创建下一个条件FP树
        if myHead != None:
            print('conditional tree for: ', newFreqSet)
            myCondTree.disp(1)
            mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
 
 
parsedDat = [line.split() for line in open('kosarak.dat').readlines()]
initSet = createInitSet(parsedDat)
myFPtree, myHeaderTab = createTree(initSet, 100000)
myFreqList = []
mineTree(myFPtree, myHeaderTab, 100000, set([]), myFreqList)
print(myFreqList)

参考:机器学习实战12,这篇写得比较好一点,可以更多的了解一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小风_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值