FP-Growth算法是韩嘉炜等人在2000年提出的关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。
在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。
——百度百科
算法描述
优缺点
- 优点:一般要快于Apriori
- 缺点:实现比较困难,在某些数据集上性能会下降
- 使用数据类型:标称型数据
一般流程
- 收集数据:任意方法
- 准备数据:离散数据
- 分析数据:任意方法
- 训练算法:构建一个FP树,并对树进行挖掘
- 使用算法:可用于识别经常出现的元素项,从尔用于制定决策、推荐元素或进行预测等应用
算法说明
步骤:
A.FP-tree构造:
1.扫描数据库DB一遍.得到频繁项的集合F和每个频繁项的支持度.把F按支持度递降排序,结果记为L.
2.创建FP-tree的根节点,记为T,并且标记为’null’.然后对DB中的每个事务Trans做如下的步骤.
根据L中的顺序,选出并排序Trans中的事务项.把Trans中排好序的事务项列表记为[p|P]
【其中p是第一个元素,P是列表的剩余部分.调用insert_tree([p|P],T).】
如果T有一个子结点N,其中N.item-name=p.item-name,则将N的count域值增加1;
否则,创建一个新节点N,使它的count为1,使它的父节点为T,并且使它的node_link和那些具有相同item_name域串起来.
如果P非空,则递归调用insert_tree(P,N).
B.树挖掘:
调用FP-growth(Tree,null).
procedure FP-Growth ( Tree, x)
{
(1)if (Tree只包含单路径P) then
(2) 对路径P中节点的每个组合(记为B)
(3) 生成模式B并x,支持数=B中所有节点的最小支持度
(4) else 对Tree头上的每个ai,do
{
(5) 生成模式B= ai 并 x,支持度=ai.support;
(6) 构造B的条件模式库和B的条件FP树TreeB;
(7)if TreeB != 空集
(8)then call FP-Growth ( TreeB , B )
}
}
一个栗子
# coding:utf-8
from numpy import *
"""
FP-growth寻找频繁项集
"""
# 加载数据集
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
# 将数据集转换为set类型
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
# 树节点
class treeNode:
# name: 节点名称
# count: 出现次数
# nodeLink: 节点链接
# parent: 父节点
# children: 子节点集
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
self.parent = parentNode
self.children = {}
# 增加节点出现次数
def inc(self, numOccur):
self.count += numOccur
# 打印此节点为树根的树
def disp(self, ind=1):
print(' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind + 1)
# 创建FP树
def createTree(dataSet, minSup=1):
headerTable = {}
# 第一次遍历数据集
# 获取单个元素的频率
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
# 去除不满足最小支持度的单个元素
for k in list(headerTable.keys()):
if headerTable[k] < minSup:
del (headerTable[k])
# 频繁项集
# freqItemSet: {'p', 'v', 'u', 'q', ...}
freqItemSet = set(headerTable.keys())
# 无频繁项就返回
if len(freqItemSet) == 0:
return None, None
# 扩展头指针表
# 添加指向每种类型第一个元素的指针(节点链接)
# headerTable: {'j': [1, None], 'p': [2, None], 'r': [3, None], ...}
for k in headerTable:
headerTable[k] = [headerTable[k], None]
# 创建根节点
retTree = treeNode('Null Set', 1, None)
# 第二次遍历数据集
# 构建FP树
for tranSet, count in dataSet.items():
# tranSet: frozenset({'h', 'p', 'z', 'j', 'r'})
# count: 1
localD = {}
# 如果单个元素是频繁项,则加入localD列表
for item in tranSet:
if item in freqItemSet:
localD[item] = headerTable[item][0]
# localD: {'r': 3, 'j': 1, 'z': 5, 'h': 1, 'p': 2}
if len(localD) > 0:
# 排序
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
# 更新FP树
updateTree(orderedItems, retTree, headerTable, count)
return retTree, headerTable
# 更新FP树函数
def updateTree(items, inTree, headerTable, count):
# 判断排序后列表的第一个元素是否已经是根节点的子节点
if items[0] in inTree.children:
# 添加出现次数
inTree.children[items[0]].inc(count)
else:
# 创建根节点的子节点
inTree.children[items[0]] = treeNode(items[0], count, inTree)
# 更新头指针表的节点链接
if headerTable[items[0]][1] == None:
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
# 列表元素长度大于1
# 递归调用更新FP树函数
if len(items) > 1:
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
# 更新头指针表的节点链接的函数
def updateHeader(nodeToTest, targetNode):
# 将元素放在指针链表的最后
while (nodeToTest.nodeLink != None):
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
# 寻找节点basePat的所有前缀路径
# treeNode: 头节点表的basePat的指针指向元素
def findPrefixPath(basePat, treeNode):
condPats = {}
# 有指向的元素
while treeNode != None:
prefixPath = []
# 回溯父节点,寻找前缀路径
# prefixPath: ['r', 't', 'x', 'z']
ascendTree(treeNode, prefixPath)
# 路径长度大于1,不是单个元素
if len(prefixPath) > 1:
# 添加进condPats,记录路径的出现次数
condPats[frozenset(prefixPath[1:])] = treeNode.count
# 继续寻找basePat为结尾的前缀路径
treeNode = treeNode.nodeLink
# condPats: {frozenset({'z'}): 1, frozenset({'s', 'x'}): 1, frozenset({'x', 'z'}): 1}
return condPats
# 单个节点回溯,寻找前缀路径
def ascendTree(leafNode, prefixPath):
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
# 根据FP树寻找频繁项集
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
# 头指针表排序
# bigL: ['h', 'j', 'u', 'v', 'w',...]
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1][0])]
for basePat in bigL:
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
print('finalFrequent Item: ', newFreqSet)
freqItemList.append(newFreqSet)
# 以basePat为节点的所有前缀路径
# condPattBases: {frozenset({'z', 'r', 'p'}): 1, ...}
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
print('condPattBases :', basePat, condPattBases)
# 以当前元素的所有前缀路径,创建条件FP树
myCondTree, myHead = createTree(condPattBases, minSup)
print('head from conditional tree: ', myHead)
# 根据条件FP树和条件头指针表,递归创建下一个条件FP树
if myHead != None:
print('conditional tree for: ', newFreqSet)
myCondTree.disp(1)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
parsedDat = [line.split() for line in open('kosarak.dat').readlines()]
initSet = createInitSet(parsedDat)
myFPtree, myHeaderTab = createTree(initSet, 100000)
myFreqList = []
mineTree(myFPtree, myHeaderTab, 100000, set([]), myFreqList)
print(myFreqList)
参考:机器学习实战12,这篇写得比较好一点,可以更多的了解一下