爱情到来绝不能犹豫。
关注博主容不得迟缓。
题目:
【题目描述】
小蓝有一条玩具蛇,一共有16 节,上面标着数字1 至16。每一节都是一个正方形的形状。相邻的两节可以成直线或者成90 度角。
小蓝还有一个4 X 4 的方格盒子,用于存放玩具蛇,盒子的方格上依次标着字母A 到P 共16 个字母。
小蓝可以折叠自己的玩具蛇放到盒子里面。他发现,有很多种方案可以将玩具蛇放进去。
下图给出了两种方案:
请帮小蓝计算一下,总共有多少种不同的方案。如果两个方案中,存在玩具蛇的某一节放在了盒子的不同格子里,则认为是不同的方案。
【答案类型】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
解析:
本题目数据量不大,很容易想到dfs,利用dfs一直搜索下去,然后搜索到一个答案,就记录下来。
对每个坐标当成是一个起始的位置,然后进行搜索。注意搜索不要超出界限。
我在这个题目中一开始犯了一个错误,我的dfs本体是这样写的。
void dfs(int x, int y, int step) {
map[x][y] = step;
if (step == 16) {
ans++;
return;
}
for (int it = 0; it < 4; it++) {
if (map[x + dx[it]][y + dy[it]] == 0 && 1 <= x + dx[it] && x + dx[it] <= 4 && 1 <= y + dy[it] && y + dy[it] <= 4) {
dfs(x + dx[it], y + dy[it], step + 1);
}
}
map[x][y] = 0;
}
因为我对dfs的理解是这样:(1)dfs当前的i,j,step是现在的状态。(2)dfs(x + dx[it], y + dy[it], step + 1);是从当前状态对下一个状态的转移方程。
然后,最后一行的 map[x][y] = 0; 是对之前的回溯。这样一看好像没有什么问题。
但仔细一看问题出在:在step==16的时候,我直接return了。也就是在dfs(XXX,XXX,16)这个状态我没有执行map[xxx][xxx] = 0;从而最终答案不对。
正解代码:
#include <iostream>
using namespace std;
int map[7][7] = {0};
long long ans = 0;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
void dfs(int x, int y, int step) {
map[x][y] = step;
if (step == 16) {
ans++;
map[x][y] = 0; //一定注意要有这一句话。
return;
}
for (int it = 0; it < 4; it++) {
if (map[x + dx[it]][y + dy[it]] == 0 && 1 <= x + dx[it] && x + dx[it] <= 4 && 1 <= y + dy[it] && y + dy[it] <= 4) {
dfs(x + dx[it], y + dy[it], step + 1);
}
}
map[x][y] = 0;
}
int main() {
for (int i = 1; i <= 4; i++) {
for (int j = 1; j <= 4; j++) {
memset(map, 0, sizeof(map));
dfs(i, j, 1);
}
}
cout << ans;
return 0;
}
最终答案是:552