Dify自定义工作流集成指南:对接阿里云百炼文生图API的实现方案

dify工作流的应用基本解释

dify应用发布相关地址:应用发布 | Dify

根据官方教程,我们可以看到dify自定义的工作流可以发布为----工具

这个教程将介绍如何通过工作流建立一个使用阿里云百炼文生图模型。

工具则可以给其他功能使用,如agent和chatflow

生成图 图例:

dify工作流配置文件下载地址

阿里图片 .yml

dify工作流配置文件使用教程

导入DSL文件

  • 工作室-创建应用-导入DSL文件

  • 选择文件-阿里图片.yml-创建

导入DSL文件图例:

阿里图片工作流修改环境变量

  • model

    • wanx2.1-t2i-turbo ✅(免费额度:每个账号500次,超出0.14/张)

    • wanx2.1-t2i-plus ✅(免费额度:每个账号500次,超出0.20/张)

    • wanx2.0-t2i-turbo ✅(免费额度:每个账号500次,超出0.04/张)

    • flux-schnell ✅(限时免费)

    • flux-merged ✅(限时免费)

    • stable-diffusion-3.5-large ❌(需要申请,还没成功)

    • stable-diffusion-3.5-large-turbo❌(需要申请,还没成功)

    • 其他的没用尝试。。。

  • aliapikey

    • 填写阿里的apiley

apiley获取图例:


 

阿里图片-填写环境变量图例:

发布为工具

  • 右上角 发布-发布为工具

  • 配置(必须的参数)

    • 名称 头像

    • 工具调用名称(必须英文)

    • 标签:图片

工具入参不需要填写,入参为其他工具调用时传递的参数变量。

发布图例:

配置图例:

自定义修改参数简介

这一块没有需求的可以不用看哦,这地方属于自定义图片参数的进阶教程

默认参数里仅包含 正向词,尺寸和图1张

如需修改按照下面的教程

  • 点击 post请求参数

    • 阿里云官方教程-阿里云百炼-模型广场-你需要的模型-API调用示例

    • HTTP 调用-parameters 参数以及input

图例默认参数:

会出现的问题

  • (timeout)现阶段处理逻辑:

    • 当前逻辑为每3秒判断一次是否成功生成图片,每次流程大约耗时10秒,若未成功,则进入循环重试。

    • 如果开启重试间隔(5000毫秒)和最大重试次数,流程总时间会增加,通常在20-25秒内出图,建议不要低于3次。

    • 若不开启重试机制,容易因超时而提示失败。

AGENT中调用工作流工具(阿里图片)方式

  • 工具-添加-工作流

CHATFLOW中调用工作流工具(阿里图片)方式

这地方不同人不同项目的方式略微不同,我将展示我的流程

  • 问题分类器

    • 根据问题分类器判断用户输入的问题是否是画图

  • 阿里图片

    • 输入的变量:sys.query

  • 参数提取器

    • 输入变量:阿里图片/text

    • 提取参数:新增一个img_data 这个属于输出变量

  • 输出图片:使用md格式包裹图片url地址

问题分类器图例:

阿里图片图例:

提取参数图例:

输出图片图例:

<think>好的,用户之前问过关于大模型聊天界面的开源项目推荐,现在他需要在学校部署DeepSeek,问建议选哪个。我需要先理解他的需求。 首先,用户可能是在学校环境中部署,可能涉及资源限制,比如硬件配置、网络环境,或者是否需要本地部署而不是云服务。DeepSeek是一个大模型,可能对计算资源有较高要求。 用户之前得到过一些UI项目的推荐,比如Gradio、Chatbot UI、Open WebUI等。现在的问题是针对部署DeepSeek,选择合适的工具。我需要考虑DeepSeek的兼容性,以及哪些UI项目支持它。 可能用户已经了解过DeepSeek的部署要求,比如是否需要特定的API接口,或者是否支持本地模型加载。例如,如果DeepSeek提供类似OpenAIAPI接口,那么可以选择支持OpenAI API的UI项目,比如Chatbot UI或NextChat。如果DeepSeek需要本地部署,可能需要使用支持本地模型的UI,比如Open WebUI,特别是如果它通过Ollama这样的工具来管理模型。 另外,学校环境可能更注重易用性和维护性,所以需要选择文档齐全、社区活跃的项目。例如,Open WebUI有Docker支持,可能更容易部署和维护。而Gradio虽然简单,但可能在功能上不够全面,适合快速测试。 还要考虑是否需要额外的功能,比如多用户管理、权限控制、知识库集成等。例如,Dify或FastGPT可能提供更多企业级功能,适合学校这种多用户环境。 可能需要确认DeepSeek的API接口类型,是否兼容OpenAI格式。如果兼容的话,很多项目都可以通过修改API地址和密钥来接入。如果不兼容,可能需要定制开发,这时候选择Gradio或Streamlit这样的灵活工具可能更合适。 总结,用户需要的是在学校部署DeepSeek模型的聊天界面,推荐的项目需要支持DeepSeek的API或本地部署,并且易于学校环境下的维护和使用。根据之前的推荐,Open WebUI和Chatbot UI可能是主要候选,但需要进一步确认DeepSeek的兼容性。</think>在学校部署 **DeepSeek** 大模型时,需综合考虑模型部署方式(本地/云端)、硬件资源、交互需求以及维护成本。以下是针对不同场景的推荐方案和关键注意事项: --- ### **1. 快速验证(轻量级部署)** #### **Gradio + 本地API** - **适用场景**:实验室快速测试、课程演示 - **优势**:无需复杂配置,5分钟搭建界面,支持流式输出 - **部署步骤**: 1. 确保 DeepSeek 模型已通过 **FastAPI** 或 **Flask** 封装为本地 HTTP API 2. 使用 Gradio 调用 API 接口: ```python import gradio as gr import requests def chat(input_text): response = requests.post( "http://localhost:8000/deepseek-chat", json={"prompt": input_text} ) return response.json()["answer"] gr.ChatInterface(chat).launch(server_name="0.0.0.0") # 允许校内网络访问 ``` 3. 通过校园网 IP 或域名开放访问(需注意安全权限) - **GitHub**: [Gradio](https://github.com/gradio-app/gradio) --- ### **2. 生产级交互(高仿ChatGPT风格)** #### **Open WebUI + 本地模型** - **适用场景**:长期稳定服务、多用户访问(如校内AI助手) - **优势**: - 完全开源,支持 Docker 一键部署 - 内置用户权限管理、对话历史存储 - 支持 RAG 知识库(可上传校内文档辅助问答) - **部署条件**: - 需确保服务器 GPU 资源满足 DeepSeek 推理需求 - 若 DeepSeek 已封装为类 OpenAI API,直接通过环境变量配置: ```bash docker run -d \ -e OLLAMA_API_BASE_URL=http://deepseek-api:11434 \ # 替换为DeepSeek API地址 -p 3000:8080 \ --name open-webui \ ghcr.io/open-webui/open-webui:main ``` - **GitHub**: [Open WebUI](https://github.com/open-webui/open-webui) --- ### **3. 企业级扩展(多模型管理)** #### **Dify + 自定义模型接入** - **适用场景**:需结合 DeepSeek 与其他模型(如文生、语音),或需要可视化工作流 - **优势**: - 支持模型联邦管理(如同时接入 DeepSeek、GPT-4、本地小模型) - 提供数据集管理、知识检索、监控统计等功能 - **接入步骤**: 1. 在 Dify 后台添加自定义模型,配置 DeepSeek 的 API 端点 2. 创建应用并选择 DeepSeek 作为推理引擎 3. 通过 iframe 或独立域名嵌入校内系统 - **GitHub**: [Dify](https://github.com/langgenius/dify) --- ### **关键注意事项** 1. **硬件资源**: - DeepSeek-7B 至少需 16GB GPU 显存(如 A10/A100),CPU 推理需 32GB 以上内存 - 多用户并发时建议使用 Kubernetes 扩展负载 2. **网络与安全**: - 限制外网访问,仅开放校内 IP 段 - 若需公网访问,需配置 HTTPS 和鉴权(如 OAuth2 对接学校账号系统) 3. **模型优化**: - 使用 **vLLM** 或 **TGI** 框架加速推理 - 对学术场景定制 Prompt(如禁用非学术内容生成) --- ### **推荐组合** | 场景 | 推荐方案 | 成本预估 | |-----------------------|--------------------------|------------------| | 课程实验/短期项目 | Gradio + 本地 API | 低(无需维护) | | 长期校内AI助手 | Open WebUI + Docker 集群 | 中(需IT支持) | | 科研平台多模型服务 | Dify + 混合云部署 | 高(专业运维) | 建议先通过 Gradio 快速验证流程,再根据用户量逐步升级到 Open WebUI 或 Dify。部署前务必与学校信息中心沟通网络安全策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无意义博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值