传统的机器学习过程中,不同的任务会用到不同的机器学习模型,然而迁移学习是针对某一种类型构造的数据也可以运用到另一类型的系统和数据中。
迁移学习是从一个或多个源领域中通过训练该模型,得出有用的知识并将其用在新的目标任务上(未标记的同一类有相似特征的物品或者是未标记的不同类物品)本质是知识的迁移再利用。
迁移学习的目标是从一个或者多个源领域任务中提取有用知识并将其用在新的目标任务上,本质上就是知识的迁移再利用。
按照迁移学习的定义,可以将迁移学习分为三种类型,分布差异迁移学习,特征差异迁移学习和标签差异迁移学习。分布差异迁移学习之源域和目标域数据的边缘分布或者条件概率分布不同,特征差异迁移学习之源域数据和目标数据特征空间不同,标签差异迁移学习指源域和目标域的数据标记空间不同。
用香蕉和苹果分类问题为例,源域数据是已有的带标签香蕉和苹果的文本数据,目标域是新来的不带标记的香蕉和苹果的文本数据,源域和目标域的数据来自不同的时间,不同地点,数据分布不同,但标记空间和特征空间是相同的,利用源域中的数据来进行目标域的学习问题就是属于分布差异迁移学习问题。
源域数据是带有标记的苹果和香蕉的文本数据,而目标域是不带有 标记的苹果和香蕉的图片数据,源域和目标域一个是文本,一个是图像,属于特征差异迁移学习范围。
源域数据是带有标记的香蕉和苹果的文本数据,属于二分类问题,目标域是不带标记的梨子,橘子和橙子的文本数据属于三分类问题,