【Pytorch学习】复现DCGAN训练生成动漫头像

先看一下结果:

 1,环境安装指令

conda create -n pytorch python=3.7
activate pytorch
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install matplotlib
pip install IPython
pip install opencv-python

2,训练过程

先构建判别器和生成器,判别器和生成器有各自的损失函数,损失迭代为顺序迭代更新各自的权值,先训练判别器,再训练生成器

第 1 部分-训练判别器

回想一下,训练判别器的目的是最大程度地提高将给定输入正确分类为真实或伪造的可能性。 就古德费罗而言,我们希望“通过提高其随机梯度来更新判别器”。 实际上,我们要最大化log D(x) + log(1 - D(G(z))。 由于 ganhacks 提出了单独的小批量建议,因此我们将分两步进行计算。 首先,我们将从训练集中构造一批真实样本,向前通过D,计算损失(log D(x)),然后在向后通过中计算梯度。 其次,我们将使用当前生成器构造一批假样本,将这批伪造通过D,计算损失(log(1 - D(G(z)))),然后反向累积梯度。 现在,利用全批量和全批量的累积梯度,我们称之为判别器优化程序的一个步骤。

第 2 部分-训练生成器

如原始论文所述,我们希望通过最小化log(1 - D(G(z)))来训练生成器,以产生更好的假货。 如前所述,Goodfellow 证明这不能提供足够的梯度,尤其是在学习过程的早期。 作为解决方法,我们希望最大化log D(G(z))。 在代码中,我们通过以下步骤来实现此目的:将第 1 部分的生成器输出与判别器进行分类,使用实数标签GT计算G的损失,反向计算G的梯度,最后使用优化器步骤更新G的参数。 将真实标签用作损失函数的GT标签似乎是违反直觉的,但这使我们可以使用 BCELoss 的log(x)部分(而不是log(1 - x)部分),这正是我们想要的。

最后,我们将进行一些统计报告,并在每个周期结束时,将我们的fixed_noise批量推送到生成器中,以直观地跟踪G的训练进度。 报告的训练统计数据是:

  • Loss_D-判别器损失,计算为所有真实批量和所有假批量的损失总和(log D(x) + log D(G(z)))。
  • Loss_G-生成器损失计算为log D(G(z))
  • D(x)-所有真实批量的判别器的平均输出(整个批量)。 这应该从接近 1 开始,然后在G变得更好时理论上收敛到 0.5。 想想这是为什么。
  • D(G(z))-所有假批量的平均判别器输出。 第一个数字在D更新之前,第二个数字在D更新之后。 这些数字应从 0 开始,并随着G的提高收敛到 0.5。 想想这是为什么。

完整训练程序如下:

from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

# Set random seed for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
#print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)

##############################
##1.参数设置
##############################

# Root directory for dataset
dataroot = "data/imgs"

# Number of workers for dataloader
workers = 2

# Batch size during training
batch_size = 128

# Spatial size of training images. All images will be resized to this
#   size using a transformer.
image_size = 256

# Number of channels in the training images. For color images this is 3
nc = 3

# Size of z latent vector (i.e. size of generator input)
nz = 100

# Size of feature maps in generator
ngf = 64

# Size of feature maps in discriminator
ndf = 64

# Number of training epochs
num_epochs = 200

# Learning rate for optimizers
lr = 0.0002


# Beta1 hyperparam for Adam optimizers
beta1 = 0.5

# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1


##############################
##2.数据加载
##############################

# We can use an image folder dataset the way we have it setup.
# Create the dataset
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                               transforms.Resize(image_size),
                               transforms.CenterCrop(image_size),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                           ]))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                         shuffle=True, num_workers=workers)

# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")

# Plot some training images
# real_batch = next(iter(dataloader))
# plt.figure(figsize=(8,8))
# plt.axis("off")
# plt.title("Training Images")
# plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))

#权重初始化,均值为 0,stdev = 0.02的正态分布中随机初始化
# custom weights initialization called on netG and netD
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


##############################
##3.生成器
##############################
# Generator Code

class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)

class Generator_256(nn.Module):
    def __init__(self, ngpu):
        super(Generator_256, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d(ngf, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 64 x 64
            nn.ConvTranspose2d(ngf, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 128 x 128
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 256 x 256
        )

    def forward(self, input):
        return self.main(input)



# Create the generator
netG = Generator_256(ngpu).to(device)

# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netG = nn.DataParallel(netG, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netG.apply(weights_init)

# Print the model
#print(netG)

##############################
##3.判别器
##############################
class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)


class Discriminator_256(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator_256, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 256 x 256
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # input is (nc) x 128 x 128
            nn.Conv2d(ndf, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # input is (nc) x 64 x 64
            nn.Conv2d(ndf, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

# Create the Discriminator
netD = Discriminator_256(ngpu).to(device)

# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netD = nn.DataParallel(netD, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netD.apply(weights_init)

# Print the model
#print(netD)


##############################
##4.损失函数,优化器
##############################

# Initialize BCELoss function

# def wloss(target,label):
#     return -target.mean()+label.mean()

criterion = nn.BCELoss()

#criterion = nn.MSELoss()



# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)

# Establish convention for real and fake labels during training
real_label = 1.
fake_label = 0.

# # Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

# optimizerD = optim.RMSprop(netD.parameters(),lr=lr)
# optimizerG = optim.RMSprop(netG.parameters(),lr=lr)

##############################
##5.训练
##############################
# netG.load_state_dict(torch.load('netG_final.pkl'))
# netD.load_state_dict(torch.load('netD_final.pkl'))

# Training Loop
if __name__=='__main__':
    # Lists to keep track of progress
    img_list = []
    G_losses = []
    D_losses = []
    iters = 0
    real_batch = next(iter(dataloader))
    print("Starting Training Loop...")
    # For each epoch
    for epoch in range(num_epochs):
        # For each batch in the dataloader
        for i, data in enumerate(dataloader, 0):

            ############################
            # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
            ###########################
            ## Train with all-real batch
            netD.zero_grad()
            # Format batch
            real_cpu = data[0].to(device)
            b_size = real_cpu.size(0)
            label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
            # Forward pass real batch through D
            output = netD(real_cpu).view(-1)
            # Calculate loss on all-real batch
            errD_real = criterion(output, label)
            # Calculate gradients for D in backward pass
            errD_real.backward()
            D_x = output.mean().item()

            ## Train with all-fake batch
            # Generate batch of latent vectors
            noise = torch.randn(b_size, nz, 1, 1, device=device)
            # Generate fake image batch with G
            fake = netG(noise)
            label.fill_(fake_label)
            # Classify all fake batch with D
            output = netD(fake.detach()).view(-1)
            # Calculate D's loss on the all-fake batch
            errD_fake = criterion(output, label)
            # Calculate the gradients for this batch
            errD_fake.backward()
            D_G_z1 = output.mean().item()
            # Add the gradients from the all-real and all-fake batches
            errD = errD_real + errD_fake
            # Update D
            optimizerD.step()

            ############################
            # (2) Update G network: maximize log(D(G(z)))
            ###########################
            netG.zero_grad()
            label.fill_(real_label)  # fake labels are real for generator cost
            # Since we just updated D, perform another forward pass of all-fake batch through D
            output = netD(fake).view(-1)
            # Calculate G's loss based on this output
            errG = criterion(output, label)
            # Calculate gradients for G
            errG.backward()
            D_G_z2 = output.mean().item()
            # Update G
            optimizerG.step()

            # Output training stats
            if i % 50 == 0:
                print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                      % (epoch, num_epochs, i, len(dataloader),
                         errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
                # 保存
                torch.save(netG.state_dict(), 'netG.pkl')
                torch.save(netD.state_dict(), 'netD.pkl')
                #model.load_state_dict(torch.load('\parameter.pkl'))
            # Save Losses for plotting later
            G_losses.append(errG.item())
            D_losses.append(errD.item())

            # Check how the generator is doing by saving G's output on fixed_noise
            if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
                with torch.no_grad():
                    fake = netG(fixed_noise).detach().cpu()
                img_list.append(vutils.make_grid(fake, padding=2, normalize=True))

            iters += 1

    torch.save(netG.state_dict(), 'netG_final.pkl')
    torch.save(netD.state_dict(), 'netD_final.pkl')
    plt.figure(figsize=(10,5))
    plt.title("Generator and Discriminator Loss During Training")
    plt.plot(G_losses,label="G")
    plt.plot(D_losses,label="D")
    plt.xlabel("iterations")
    plt.ylabel("Loss")
    plt.legend()
    plt.show()



    #%%capture
    fig = plt.figure(figsize=(8,8))
    plt.axis("off")
    ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img_list]
    ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)

    HTML(ani.to_jshtml())

    # Grab a batch of real images from the dataloader
    real_batch = next(iter(dataloader))

    # Plot the real images
    plt.figure(figsize=(15,15))
    plt.subplot(1,2,1)
    plt.axis("off")
    plt.title("Real Images")
    plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

    # Plot the fake images from the last epoch
    plt.subplot(1,2,2)
    plt.axis("off")
    plt.title("Fake Images")
    plt.imshow(np.transpose(img_list[-1],(1,2,0)))
    plt.show()


训练数据为:

 训练程序及训练数据:下载pytorch版本DCGAN生成二次元头像,包含源码训练测试代码,以及训练数据

 训练损失:

 真假图对比:

 3,测试推理

加载训练过程的权值,进行前向推理批量生成头像数据

from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import cv2

# Set random seed for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
#print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)

##############################
##1.参数设置
##############################

# Spatial size of training images. All images will be resized to this
#   size using a transformer.
image_size = 256

# Number of channels in the training images. For color images this is 3
nc = 3

# Size of z latent vector (i.e. size of generator input)
nz = 100

# Size of feature maps in generator
ngf = 64

# Size of feature maps in discriminator
ndf = 64

# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1

# Decide which device we want to run on
#device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
device = torch.device("cpu")

#权重初始化,均值为 0,stdev = 0.02的正态分布中随机初始化
# custom weights initialization called on netG and netD
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


##############################
##生成器
##############################
# Generator Code

class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)



class Generator_256(nn.Module):
    def __init__(self, ngpu):
        super(Generator_256, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d(ngf, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 64 x 64
            nn.ConvTranspose2d(ngf, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 128 x 128
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 256 x 256
        )

    def forward(self, input):
        return self.main(input)


# Create the generator
netG = Generator_256(ngpu).to(device)

# # Handle multi-gpu if desired
# if (device.type == 'cuda') and (ngpu > 1):
#     netG = nn.DataParallel(netG, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
#netG.apply(weights_init)
netG.load_state_dict(torch.load('netG_final.pkl'))
# Print the model
print(netG)



##############################
##推理
##############################

# Training Loop
if __name__=='__main__':

    # Generate batch of latent vectors
    noise = torch.randn(32, nz, 1, 1, device=device)
    # Generate fake image batch with G
    fake = netG(noise)
    fake = fake.detach().numpy()
    i=0
    for f in fake:
        print(f.shape)
        dst_img = np.transpose(f, (1, 2, 0))
        dst_img = cv2.cvtColor(dst_img, cv2.COLOR_RGB2BGR)
        cv2.imwrite('./gen_imgs_256/'+str(i)+'.jpg',dst_img*255)
        i+=1
        cv2.imshow('dst',dst_img)
        cv2.waitKey(500)







 资源下载:pytorch版本DCGAN生成二次元头像,包含源码训练测试代码,以及训练数据icon-default.png?t=M1H3https://download.csdn.net/download/qq_34106574/81276178?spm=1001.2014.3001.5503

 

 

### 回答1: 要使用PyTorch实现DCGAN训练自己的数据集,你需要按照以下步骤操作: 1. 数据准备:将自己的数据集准备成PyTorch可以读取的格式。确保数据集包含一系列图像,并将它们保存在一个文件夹中。 2. 数据预处理:对数据集进行预处理,例如缩放和裁剪图像大小、归一化像素值等。这些预处理步骤有助于提高模型的训练效果。 3. 定义模型:DCGAN由两个神经网络组成,一个生成器和一个判别器。生成器接收一个噪声向量作为输入,并生成与数据集中图像相似的图像。判别器用于判断输入的图像是真实的还是由生成生成的假图像。在PyTorch中,你需要定义这两个网络的结构和参数。 4. 定义损失函数和优化器:在DCGAN中,通常使用二进制交叉熵作为损失函数,并使用Adam优化算法来更新网络参数。 5. 训练模型:将准备好的数据集传入生成器和判别器中,通过反向传播来更新网络参数。在训练过程中,生成器和判别器交替训练,以提高生成生成真实图像的能力,并使判别器更好地区分真实图像和生成图像。 6. 评估模型:使用测试集对训练好的模型进行评估,检查生成生成的图像质量,并计算模型的性能指标,如生成图像与真实图像之间的相似度分数。 7. 保存模型:在训练完成后,将模型参数保存起来以备后续使用。 这些是使用PyTorch实现DCGAN训练自己的数据集的主要步骤。根据你的数据集和应用场景,你可能需要进行一些适当的调整和改进来获得更好的性能和结果。 ### 回答2: PyTorch是一个开源机器学习框架,可用于实现深度卷积生成对抗网络(DCGAN)来训练自己的数据集。下面是一个简单的步骤,用于实现这个过程: 1. 数据集准备:首先,需要准备自己的数据集。确保数据集包含大量的样本,并将其组织成文件夹的形式,每个文件夹代表一个类别。可以使用torchvision库来加载并预处理数据集。 2. 编写生成器模型:生成器是DCGAN的一部分,它将随机噪声向量转换为生成的图像。使用PyTorch定义一个生成器模型,通常包含几个卷积和反卷积层。 3. 编写判别器模型:判别器是DCGAN的另一部分,它将输入图像识别为真实的图像或生成的图像。使用PyTorch定义一个判别器模型,通常包含几个卷积层和全连接层。 4. 定义损失函数和优化器:DCGAN使用对抗性损失函数,通过最小化生成器和判别器之间的差异来训练模型。在PyTorch中,可以使用二分类交叉熵损失函数和Adam优化器。 5. 训练模型:将数据加载到网络中,将真实的图像标记为“1”,将生成的图像标记为“0”,然后使用与真实图像和生成图像对应的标签训练生成器和判别器。反复迭代此过程,直到生成的图像质量达到预期。 6. 保存模型和结果:在训练完成后,保存生成器模型和生成的图像结果,以备将来使用。 通过按照上述步骤实现,就可以使用PyTorch训练自己的数据集,并生成高质量的图像。可以根据需要进行调整和优化,以获得最佳结果。 ### 回答3: PyTorch是一个深度学习框架,可以用来实现DCGAN(深度卷积生成对抗网络)从而训练自己的数据集。 DCGAN是一种生成对抗网络结构,由生成器和判别器组成。生成器负责生成训练数据类似的新样本,判别器则负责将生成样本和真实样本进行区分。通过训练生成器和判别器,DCGAN可以生成高质量的图像。 首先,需要准备自己的数据集。可以是任何类型的图像数据集,如猫狗、汽车等。将数据集文件夹中的图像按照一定的规则进行预处理,例如缩放到固定的大小,并将其保存在一个新文件夹中。 接下来,需要定义生成器和判别器的网络结构。生成器通常由一系列转置卷积层组成,而判别器则由普通卷积层组成。在PyTorch中,可以通过定义继承自nn.Module的Python类来定义网络结构。可以选择合适的激活函数、损失函数和优化器等。 然后,创建一个数据加载器,将预处理后的数据集加载到模型中进行训练。在PyTorch中,可以使用torchvision库中的DataLoader和Dataset类来实现数据加载。 接下来,设置超参数,例如学习率、批量大小、迭代次数等。然后,初始化生成器和判别器的模型实例,并将其移动到GPU(如果有)或CPU上。 在训练过程中,首先通过生成生成一些假样本,并与真实样本一起传入判别器进行区分。然后,根据判别器的输出和真实标签计算损失,更新判别器的权重。接下来,再次生成一些假样本,并将其与真实标本标签交换,再次计算损失并更新生成器的权重。重复该过程多次,直到达到预定的迭代次数。 最后,保存训练好的生成器模型,并使用其来生成新的样本。可以通过生成器的前向传播方法,输入一个随机噪声向量,并将其转换为图像。 通过以上步骤,可以使用PyTorch实现DCGAN训练自己的数据集。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur.AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值