CCM buck变换器的平均模型和交流小信号模型
重新学习了DC-DC建模的方法,类似于平均开关法,记录一下。
顺便考虑一个非理想因素,二极管的压降Vd=0.5 V
(假设二极管压降恒定)。使用电路的参数:
平均模型
过程
观察开关M1的电流和Vds波形:
忽略电感电流的波动,可以得到,流过MOS的平均电流 i M 1 = D i L i_{M1} = Di_L iM1=DiL,DS平均电压 v D S = ( 1 − D ) ( V i − V o ) v_{DS}=(1-D)(V_i-V_o) vDS=(1−D)(Vi−Vo)
同样,观察二极管D1的电流和电压波形:
忽略电感电流的波动,可以得到,流过二极管的平均电流 i D 1 = ( 1 − D ) i L i_{D1} = (1-D)i_L iD1=(1−D)iL,平均反向电压 v D = D V i − ( 1 − D ) V d v_{D}=DV_i-(1-D)V_d vD=DVi−(1−D)Vd
用受控源来代替开关,可以获得平均模型,总共有四种排列组合:
- 开关:电压源,二极管:电压源
- 开关:电压源,二极管:电流源
- 开关:电流源,二极管:电压源
- 开关:电流源,二极管:电流源
一般会选择3,开关等效为电流源,二极管等效为电压源,如下图。
简单验证
左边是buck仿真模型,使用了理想开关。右边是平均模型,开关和二极管用受控源代替。
输入电压跳变时,电感电流和输出电流的波形如下图。可见平均模型和原电路的动态响应波形还是比较接近的。
交流小信号模型
过程
因为平均模型中有耦合项,比如开关的电流D*iL
,小信号模型是为了获得线性的电路,从而获得传递函数。
建模过程类似于对时间t求全微分
Δ
(
D
(
t
)
i
L
(
t
)
)
=
D
Δ
i
L
(
t
)
+
D
Δ
d
(
t
)
Δ
(
D
(
t
)
V
i
(
t
)
−
(
1
−
D
(
t
)
)
V
d
)
=
D
Δ
V
i
+
(
V
i
+
V
d
)
Δ
d
(
t
)
\Delta (D(t)i_L(t))=D\Delta i_L(t) + D\Delta d(t) \\ \Delta (D(t)V_i(t)-(1-D(t))V_d) = D \Delta V_i + (V_i + V_d) \Delta d(t)
Δ(D(t)iL(t))=DΔiL(t)+DΔd(t)Δ(D(t)Vi(t)−(1−D(t))Vd)=DΔVi+(Vi+Vd)Δd(t)
从而受控源都转换成为线性的受控源,如下:
用线性的受控源替换入平均模型,获得交流小信号模型。
- 电感电流平均值IL,用输出电流
I(R3)
近似代替 - 为了调节占空比d,添加了一个电源V6,用
V(d)
表示占空比。
简单验证
对比了占空比在0.3和0.4之间跳变的波形。
- 开关电路中,使用PWM调制,调制波幅值5V,因此输入调制器的信号是在1.5V和2V跳变
- 交流小信号模型中,占空比V(d)去除了直流分量,因此是在0V和0.1V跳变。
可以看到交流小信号模型的电感电流和输出电压,相当于把开关电路进行平均后去除了直流偏置。
传递函数
过程
基于交流小信号模型,使用KVL和KCL列写电感电流和电容电压(输出电压)的方程,可以求解传递函数。有空再写。
备注
-
受控源使用了Epoly和Gpoly,使用方法,必须加上
Value=
,如Value = {Vi*D}
-
参考视频链接:https://youtu.be/gEyCQSS-sOc