CCM DC-DC变换器建模(1):buck变换器的平均模型和小信号模型

CCM buck变换器的平均模型和交流小信号模型


重新学习了DC-DC建模的方法,类似于平均开关法,记录一下。

顺便考虑一个非理想因素,二极管的压降Vd=0.5 V(假设二极管压降恒定)。使用电路的参数:

image-20220409155313629

平均模型

过程

观察开关M1的电流和Vds波形:

忽略电感电流的波动,可以得到,流过MOS的平均电流 i M 1 = D i L i_{M1} = Di_L iM1=DiL,DS平均电压 v D S = ( 1 − D ) ( V i − V o ) v_{DS}=(1-D)(V_i-V_o) vDS=(1D)(ViVo)

同样,观察二极管D1的电流和电压波形:

image-20220409160642370

忽略电感电流的波动,可以得到,流过二极管的平均电流 i D 1 = ( 1 − D ) i L i_{D1} = (1-D)i_L iD1=(1D)iL,平均反向电压 v D = D V i − ( 1 − D ) V d v_{D}=DV_i-(1-D)V_d vD=DVi(1D)Vd

用受控源来代替开关,可以获得平均模型,总共有四种排列组合:

  1. 开关:电压源,二极管:电压源
  2. 开关:电压源,二极管:电流源
  3. 开关:电流源,二极管:电压源
  4. 开关:电流源,二极管:电流源

一般会选择3,开关等效为电流源,二极管等效为电压源,如下图。

image-20220409163515772

简单验证

左边是buck仿真模型,使用了理想开关。右边是平均模型,开关和二极管用受控源代替。

image-20220409164156216

输入电压跳变时,电感电流和输出电流的波形如下图。可见平均模型和原电路的动态响应波形还是比较接近的。

image-20220409170230805

交流小信号模型

过程

因为平均模型中有耦合项,比如开关的电流D*iL,小信号模型是为了获得线性的电路,从而获得传递函数。

建模过程类似于对时间t求全微分
Δ ( D ( t ) i L ( t ) ) = D Δ i L ( t ) + D Δ d ( t ) Δ ( D ( t ) V i ( t ) − ( 1 − D ( t ) ) V d ) = D Δ V i + ( V i + V d ) Δ d ( t ) \Delta (D(t)i_L(t))=D\Delta i_L(t) + D\Delta d(t) \\ \Delta (D(t)V_i(t)-(1-D(t))V_d) = D \Delta V_i + (V_i + V_d) \Delta d(t) Δ(D(t)iL(t))=DΔiL(t)+DΔd(t)Δ(D(t)Vi(t)(1D(t))Vd)=DΔVi+(Vi+Vd)Δd(t)
从而受控源都转换成为线性的受控源,如下:

image-20220409172918708

用线性的受控源替换入平均模型,获得交流小信号模型。

  • 电感电流平均值IL,用输出电流I(R3)近似代替
  • 为了调节占空比d,添加了一个电源V6,用V(d)表示占空比。

image-20220409174317776

简单验证

对比了占空比在0.3和0.4之间跳变的波形。

  • 开关电路中,使用PWM调制,调制波幅值5V,因此输入调制器的信号是在1.5V和2V跳变
  • 交流小信号模型中,占空比V(d)去除了直流分量,因此是在0V和0.1V跳变。

image-20220409175607505

可以看到交流小信号模型的电感电流和输出电压,相当于把开关电路进行平均后去除了直流偏置。

image-20220409175442325

传递函数

过程

基于交流小信号模型,使用KVL和KCL列写电感电流和电容电压(输出电压)的方程,可以求解传递函数。有空再写。

备注

  • 受控源使用了Epoly和Gpoly,使用方法,必须加上 Value=,如Value = {Vi*D}

  • 参考视频链接:https://youtu.be/gEyCQSS-sOc

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值