GAMS系列分享6-电力系统最优潮流-3节点最优潮流

           本节主要探讨      3节点电力系统     

                                     基于直流潮流的

                                     电力系统最优潮流计算。

目录

1,物理模型

2,数学模型

3,程序

4,求解结果

5,重要知识点讲解

              5.1.集合的子集

               5.2 集合的多重命名

               5.3 多维集合

              5.4 关键点:***(对其理解极其重要)

6,一定要背下来的步骤:(几乎所有的程序都是这样)




1,物理模型

                                

2,数学模型

       

 

                式1,为优化目标

                式2,线路直流潮流计算

                式3,是各节点功率平衡

                式4,线路潮流约束

               式5,发电机出力约束

3,程序

* DC-OPF  three-bus network
*集合定义
Sets bus /1*3/,slack(bus) /3/,gen /g1*g2/;
scalars sbase /100/;
alias (bus,node);
*参数设置
Table Gendata(gen,*)
      b     Pmin    Pmax
g1    10    0       65
g2    11    0       100;
set GBconect(bus,gen)
/1  .   g1
 3  .   g2 /;
Table busData(bus,*)
       pd
2      100 ;
set conex
/1  .  2
 2  .  3
 1  .  3/;
 conex(bus,node)$(conex(node,bus))=1;
 Table branch(bus,node,*)
                x        limit
 1  .  2        0.2      50
 2  .  3        0.25     100
 1  .  3        0.4      100 ;
 branch(bus,node,'x')$(branch(bus,node,'x')=0)=branch(node,bus,'x');
 branch(bus,node,'limit')$(branch(bus,node,'limit')=0)=branch(node,bus,'limit');
 branch(bus,node,'bij')$conex(bus,node) = 1/branch(bus,node,'x');

*定义变量
 Variables Pij(bus,node),pg(gen),delta(bus),of;
*方程
 Equations const1,const2,const3;
 const1(bus,node)$conex(bus,node)..pij(bus,node)=e=branch(bus,node,'bij')*(delta(bus)-delta(node));
 const2(bus)..+sum(gen$gbconect(bus,gen),pg(gen))-busdata(bus,'pd')/sbase
                   =e=sum(node$conex(node,bus),pij(bus,node));
 const3..OF=g=sum(gen,pg(gen)*gendata(gen,'b')*sbase);
*模型建立
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值