PRML一书中关于贝叶斯曲线拟合结论的推导细节

PRML一书中关于贝叶斯曲线拟合结论的推导细节

我们令训练数据集为 ( X , T ) (X,T) (X,T), 对于一个新的点 x x x, 我们希望给出一个预测分布 p ( t ∣ x , X , T ) p(t|x, X, T) p(tx,X,T)
p ( t ∣ x , X , T ) = ∫ p ( t ∣ x , w , X , T ) d w = ∫ p ( t ∣ x , w ) p ( w ∣ X , T ) d w p(t|x,X,T) =\int p(t|x,w,X,T)dw= \int p(t|x,w)p(w|X,T)dw \\ p(tx,X,T)=p(tx,w,X,T)dw=p(tx,w)p(wX,T)dw
其中, w = [ w 0 , w 1 , . . . , w M ] T w=[w_0,w_1,...,w_M]^T w=[w0,w1,...,wM]T M M M阶多项式的参数
在PRML一书中,直接给出了这么一个结论

预测分布由高斯分布 N ( t ∣ m ( x ) , s 2 ( x ) ) \mathcal N(t|m(x),s^2(x)) N(tm(x),s2(x))给出
其中均值 m ( x ) = β ϕ ( x ) T S ∑ n = 1 N ϕ ( x n ) t n m(x) = \beta\phi(x)^TS\sum_{n=1}^{N}\phi(x_n)t_n m(x)=βϕ(x)TSn=1Nϕ(xn)tn
方差 s 2 ( x ) = β − 1 + ϕ ( x ) T S ϕ ( x ) s^2(x) = \beta^{-1} + \phi(x)^TS\phi(x) s2(x)=β1+ϕ(x)T(x)
其中 S − 1 = α I + β ∑ n = 1 N ϕ ( x n ) ϕ ( x n ) T S^{-1} = \alpha I +\beta\sum_{n=1}^{N}\phi(x_n)\phi(x_n)^T S1=αI+βn=1Nϕ(xn)ϕ(xn)T, ϕ ( x ) = [ 1 , x , x 2 , . . . , x M ] T \phi(x)=[1,x,x^2,...,x^M]^T ϕ(x)=[1,x,x2,...,xM]T

这个结论给的非常突然,让人无所适从,我决定花点时间分析一下,并记录下来,以供大家参考!

如上式所述,其可以被写成积分的形式,我们利用一些结论来进行分析

  1. 首先对于t的分布应该是一个高斯分布,

p ( t ∣ x , w ) = N ( t ∣ y ( x , w ) , β − 1 ) p(t|x,w) = \mathcal N(t|y(x,w), \beta^{-1}) p(tx,w)=N(ty(x,w),β1)

  1. 对于分布 p ( w ∣ X , T ) p(w|X,T) p(wX,T), 其正比于先验分布和似然的乘积

p ( w ∣ X , T , α , β ) ∝ p ( T ∣ X , w , β ) p ( w ∣ α ) p(w|X,T, \alpha, \beta) \varpropto p(T|X, w, \beta)p(w|\alpha) p(wX,T,α,β)p(TX,w,β)p(wα)

​ 如果 α , β \alpha, \beta α,β 已知, 可以写成:
p ( w ∣ X , T ) = p ( T ∣ X , w ) p ( X , w ) p ( X , T ) = p ( T ∣ X , w ) p ( w ∣ X ) p ( X ) p ( T ∣ X ) p ( X ) = p ( T ∣ X , w ) p ( w ∣ X ) p ( T ∣ X ) p(w|X,T) = \frac{p(T|X,w)p(X,w)}{p(X,T)} = \frac{p(T|X,w)p(w|X)p(X)}{p(T|X)p(X)} = \frac{p(T|X,w)p(w|X)}{p(T|X)} p(wX,T)=p(X,T)p(TX,w)p(X,w)=p(TX)p(X)p(TX,w)p(wX)p(X)=p(TX)p(TX,w)p(wX)
所以我们可以继续将积分式子改写:
p ( t ∣ x , X , T ) = ∫ N ( t ∣ y ( x , w ) , β − 1 ) ∏ n = 1 N N ( t n ∣ y ( x n , w ) , β − 1 ) p ( w ∣ X ) p ( T ∣ X ) d w p(t|x,X,T) = \int \mathcal N(t|y(x,w), \beta^{-1}) \prod_{n=1}^N\mathcal N(t_n|y(x_n, w), \beta^{-1})\frac{p(w|X)}{p(T|X)}dw p(tx,X,T)=N(ty(x,w),β1)n=1NN(tny(xn,w),β1)p(TX)p(wX)dw

y ( x , w ) = w 0 + w 1 x + w 2 x 2 + ⋯ + w M x M = ϕ ( x ) T [ w 0 , w 1 , . . . , w M ] T = ϕ ( x ) T w ϕ ( x ) = [ 1 , x , x 2 , . . . , x M ] T y(x,w) = w_0 + w_1x + w_2x^2 + \cdots + w_Mx^M = \phi(x)^T[w_0, w_1, ..., w_M]^T = \phi(x)^Tw\\ \phi(x) = [1,x,x^2,...,x^M]^T y(x,w)=w0+w1x+w2x2++wMxM=ϕ(x)T[w0,w1,...,wM]T=ϕ(x)Twϕ(x)=[1,x,x2,...,xM]T

从而,对于高斯分布 N ( t ∣ y ( x , w ) , β − 1 ) \mathcal N(t|y(x,w), \beta^{-1}) N(ty(x,w),β1), 可以写成:
N ( t ∣ y ( x , w ) , β − 1 ) = 1 2 π β − 1 exp ⁡ ( − ( t − y ( x , w ) ) 2 2 β − 1 ) = 1 2 π β − 1 exp ⁡ ( − ( t − ϕ ( x ) T w ) 2 2 β − 1 ) \mathcal N(t|y(x,w), \beta^{-1}) = \frac{1}{\sqrt{2\pi\beta^{-1}}}\exp(-\frac{(t-y(x,w))^2}{2\beta^{-1}}) = \frac{1}{\sqrt{2\pi\beta^{-1}}}\exp(-\frac{(t-\phi(x)^Tw)^2}{2\beta^{-1}}) N(ty(x,w),β1)=2πβ1 1exp(2β1(ty(x,w))2)=2πβ1 1exp(2β1(tϕ(x)Tw)2)
同样的,我们可以写出N个高斯分布乘积的形式
∏ n = 1 N N ( t n ∣ y ( x n , w ) , β − 1 ) = ( 1 2 π β − 1 ) N / 2 exp ⁡ ( − β 2 ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) \prod_{n=1}^N\mathcal N(t_n|y(x_n, w), \beta^{-1})=(\frac{1}{2\pi\beta^{-1}})^{N/2}\exp(-\frac{\beta}{2}\sum_{n=1}^N(t_n-\phi(x_n)^Tw)^2) n=1NN(tny(xn,w),β1)=(2πβ11)N/2exp(2βn=1N(tnϕ(xn)Tw)2)
于是,如下:
N ( t ∣ y ( x , w ) , β − 1 ) ∏ n = 1 N N ( t n ∣ y ( x n , w ) , β − 1 ) = ( 1 2 π β − 1 ) ( N + 1 ) / 2 exp ⁡ ( − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) \mathcal N(t|y(x,w), \beta^{-1}) \prod_{n=1}^N\mathcal N(t_n|y(x_n, w), \beta^{-1}) = (\frac{1}{2\pi\beta^{-1}})^{(N+1)/2}\exp(-\frac{\beta}{2}((t-\phi(x)^Tw)^2 + \sum_{n=1}^N(t_n-\phi(x_n)^Tw)^2)) N(ty(x,w),β1)n=1NN(tny(xn,w),β1)=(2πβ11)(N+1)/2exp(2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))
如果我们将 p ( w ∣ X ) = p ( w ∣ α ) = ( α 2 π ) ( M + 1 ) / 2 exp ⁡ ( − α 2 w T w ) p(w|X) = p(w|\alpha) = (\frac{\alpha}{2\pi})^{(M+1)/2}\exp(-\frac{\alpha}{2}w^Tw) p(wX)=p(wα)=(2πα)(M+1)/2exp(2αwTw), 且 p ( T ∣ X ) = 1 p(T|X)=1 p(TX)=1

则有
p ( t ∣ x , X , T ) = ( β 2 π ) N + 1 2 ( α 2 π ) M + 1 2 ∫ exp ⁡ ( − α 2 w T w − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) d w p(t|x,X,T) = (\frac{\beta}{2\pi })^{\frac{N+1}{2}} (\frac{\alpha}{2\pi})^{ \frac{M+1}{2}}\int \exp\Big(-\frac{\alpha}{2}w^Tw -\frac{\beta}{2}((t-\phi(x)^Tw)^2 + \sum_{n=1}^N(t_n-\phi(x_n)^Tw)^2) \Big ) dw p(tx,X,T)=(2πβ)2N+1(2πα)2M+1exp(2αwTw2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))dw

注意到,高斯积分的形式
∫ − ∞ + ∞ e − a ( x + b ) 2 d x = π a \int _{-\infin}^{+\infin}e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}} +ea(x+b)2dx=aπ
故,
∫ exp ⁡ ( − α 2 w T w − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) d w = ∫ exp ⁡ ( − k ( w + b ) 2 + u ) d w k = α 2 + β 2 ( ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) \int \exp\Big(-\frac{\alpha}{2}w^Tw -\frac{\beta}{2}((t-\phi(x)^Tw)^2 + \sum_{n=1}^N(t_n-\phi(x_n)^Tw)^2) \Big ) dw = \int\exp(-k(w+b)^2+u)dw\\ k = \frac{\alpha}{2} + \frac{\beta}{2}(\phi(x)^T\phi(x) + \sum_{n=1}^{N}\phi(x_n)^T\phi(x_n)) exp(2αwTw2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))dw=exp(k(w+b)2+u)dwk=2α+2β(ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn))
相当于对于一个二次式进行配方,我们简单记作:
− m 1 w 2 − m 2 ( m 3 w 2 + m 4 w + m 5 ) m 1 = α 2 , m 2 = β 2 m 3 = ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) m 4 = − 2 ( t ϕ ( x ) T + ∑ n = 1 N t n ϕ ( x n ) T ) m 5 = t 2 + ∑ n = 1 N t n 2 -m_1w^2-m_2(m_3w^2+m_4w+m_5)\\ m_1 = \frac{\alpha}{2}, m_2=\frac{\beta}{2}\\ m_3 = \phi(x)^T\phi(x) + \sum_{n=1}^N\phi(x_n)^T\phi(x_n)\\ m_4 =-2(t\phi(x)^T + \sum_{n=1}^Nt_n\phi(x_n)^T)\\ m_5 = t^2 + \sum_{n=1}^Nt_n^2 m1w2m2(m3w2+m4w+m5)m1=2α,m2=2βm3=ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn)m4=2((x)T+n=1Ntnϕ(xn)T)m5=t2+n=1Ntn2
从而,
− ( m 1 + m 2 m 3 ) w 2 − m 2 m 4 w − m 2 m 5 = − ( m 1 + m 2 m 3 ) ( w 2 + m 2 m 4 m 1 + m 2 m 3 w + m 2 m 5 m 1 + m 2 m 3 ) = − ( m 1 + m 2 m 3 ) [ ( w + m 2 m 4 2 ( m 1 + m 2 m 3 ) ) 2 + m 2 m 5 m 1 + m 2 m 3 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) 2 ] = − ( m 1 + m 2 m 3 ) [ ( w + m 2 m 4 2 ( m 1 + m 2 m 3 ) ) 2 + 4 ( m 1 + m 2 m 3 ) m 2 m 5 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) 2 ] = − ( m 1 + m 2 m 3 ) ( w + m 2 m 4 2 ( m 1 + m 2 m 3 ) ) 2 + 4 ( m 1 + m 2 m 3 ) m 2 m 5 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) -(m_1+m_2m_3)w^2 - m_2m_4w - m_2m_5=-(m_1+m_2m_3)(w^2+\frac{m_2m_4}{m_1+m_2m_3}w + \frac{m_2m_5}{m_1+m_2m_3})\\ =-(m_1+m_2m_3)[(w+\frac{m_2m_4}{2(m_1+m_2m_3)})^2 + \frac{m_2m_5}{m_1+m_2m_3} - \frac{m_2^2m_4^2}{4(m_1+m_2m_3)^2}]\\ =-(m_1+m_2m_3)[(w+\frac{m_2m_4}{2(m_1+m_2m_3)})^2 + \frac{4(m_1+m_2m_3)m_2m_5 -m_2^2m_4^2}{4(m_1+m_2m_3)^2}]\\ =-(m_1+m_2m_3)(w+\frac{m_2m_4}{2(m_1+m_2m_3)})^2 + \frac{4(m_1+m_2m_3)m_2m_5 -m_2^2m_4^2}{4(m_1+m_2m_3)} (m1+m2m3)w2m2m4wm2m5=(m1+m2m3)(w2+m1+m2m3m2m4w+m1+m2m3m2m5)=(m1+m2m3)[(w+2(m1+m2m3)m2m4)2+m1+m2m3m2m54(m1+m2m3)2m22m42]=(m1+m2m3)[(w+2(m1+m2m3)m2m4)2+4(m1+m2m3)24(m1+m2m3)m2m5m22m42]=(m1+m2m3)(w+2(m1+m2m3)m2m4)2+4(m1+m2m3)4(m1+m2m3)m2m5m22m42
存在一个常数项,即
4 ( m 1 + m 2 m 3 ) m 2 m 5 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) = β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) \frac{4(m_1+m_2m_3)m_2m_5 -m_2^2m_4^2}{4(m_1+m_2m_3)} = \frac{\beta(\alpha + \beta m_3)m_5 - 4^{-1}\beta^2m_4^2}{2(\alpha + \beta m_3)} 4(m1+m2m3)4(m1+m2m3)m2m5m22m42=2(α+βm3)β(α+βm3)m541β2m42

从而,
∫ exp ⁡ ( − α 2 w T w − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) d w = π k exp ⁡ ( β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) ) \int \exp\Big(-\frac{\alpha}{2}w^Tw -\frac{\beta}{2}((t-\phi(x)^Tw)^2 + \sum_{n=1}^N(t_n-\phi(x_n)^Tw)^2) \Big ) dw = \sqrt{\frac{\pi}{k}}\exp( \frac{\beta(\alpha + \beta m_3)m_5 - 4^{-1}\beta^2m_4^2}{2(\alpha + \beta m_3)}) exp(2αwTw2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))dw=kπ exp(2(α+βm3)β(α+βm3)m541β2m42)
代入到原式得
p ( t ∣ x , X , T ) = ( β 2 π ) N + 1 2 ( α 2 π ) M + 1 2 π k exp ⁡ ( β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) ) p(t|x,X,T)= (\frac{\beta}{2\pi })^{\frac{N+1}{2}} (\frac{\alpha}{2\pi})^{ \frac{M+1}{2}}\sqrt{\frac{\pi}{k}}\exp( \frac{\beta(\alpha + \beta m_3)m_5 - 4^{-1}\beta^2m_4^2}{2(\alpha + \beta m_3)})\\ p(tx,X,T)=(2πβ)2N+1(2πα)2M+1kπ exp(2(α+βm3)β(α+βm3)m541β2m42)
对于指数部分的系数:
( β 2 π ) N + 1 2 ( α 2 π ) M + 1 2 π k = ( ( β N + 1 α M + 1 ( 2 π ) N + M + 2 ( α 2 + β 2 ( ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) ) ) ) 1 / 2 (\frac{\beta}{2\pi })^{\frac{N+1}{2}} (\frac{\alpha}{2\pi})^{ \frac{M+1}{2}}\sqrt{\frac{\pi}{k}}=\Big((\frac{\beta^{N+1}\alpha^{M+1}}{(2\pi)^{N+M+2}} (\frac{\alpha}{2}+\frac{\beta}{2}(\phi(x)^T\phi(x) + \sum_{n=1}^{N}\phi(x_n)^T\phi(x_n))))\Big)^{1/2} (2πβ)2N+1(2πα)2M+1kπ =(((2π)N+M+2βN+1αM+1(2α+2β(ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn)))))1/2
而指数部分为:
β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) = β ( α + β m 3 ) ( t 2 + t s u m ) − 1 4 β 2 ( − 2 ( t ϕ ( x ) T + ∑ n = 1 N t n ϕ ( x n ) T ) ) 2 2 ( α + β m 3 ) = β ( α + β m 3 ) ( t 2 + t s u m ) − β 2 ( t ϕ ( x ) T + q ) 2 2 ( α + β m 3 ) = [ α β + β 2 m 3 − β 2 ϕ ( x ) T ϕ ( x ) ] ⋅ t 2 − 2 β 2 ϕ ( x ) T q T t + ( α β + β 2 m 3 ) t s u m − β 2 q q T 2 ( α + β m 3 ) = [ α β + β 2 v ] ⋅ t 2 − 2 β 2 ϕ ( x ) T q T t + ( α β + β 2 m 3 ) t s u m − β 2 q q T 2 ( α + β m 3 ) = ( α β + β 2 v ) t 2 − 2 β 2 ϕ ( x ) T q T α β + β 2 v t + ( α β + β 2 m 3 ) t s u m − β 2 q q T α β + β 2 v 2 ( α + β m 3 ) = ( α β + β 2 v ) ( t − β 2 ϕ ( x ) T q T α β + β 2 v ) 2 − ( β 2 ϕ ( x ) T q T ) 2 ( α β + β 2 v ) 2 + ( α β + β 2 m 3 ) t s u m − β 2 q q T α β + β 2 v 2 ( α + β m 3 ) t s u m = ∑ n = 1 N t n 2 q = ∑ n = 1 N t n ϕ ( x n ) T v = ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) \frac{\beta(\alpha + \beta m_3)m_5 - 4^{-1}\beta^2m_4^2}{2(\alpha + \beta m_3)} = \frac{\beta(\alpha + \beta m_3)(t^2 + t_{sum}) - \frac{1}{4}\beta^2(-2(t\phi(x)^T + \sum_{n=1}^Nt_n\phi(x_n)^T))^2}{2(\alpha +\beta m_3)}\\ =\frac{\beta(\alpha + \beta m_3)(t^2 + t_{sum}) - \beta^2(t\phi(x)^T + q)^2}{2(\alpha +\beta m_3)} =\frac{[\alpha \beta + \beta^2 m_3 - \beta^2\phi(x)^T\phi(x)]\cdot t^2 -2\beta^2 \phi(x)^Tq^T t + (\alpha\beta+\beta^2 m_3)t_{sum}-\beta^2qq^T}{2(\alpha +\beta m_3)} \\ =\frac{[\alpha \beta + \beta^2 v]\cdot t^2 -2\beta^2 \phi(x)^Tq^T t + (\alpha\beta+\beta^2 m_3)t_{sum}-\beta^2qq^T}{2(\alpha +\beta m_3)}\\ =(\alpha \beta + \beta^2 v)\frac{t^2 -2\frac{\beta^2 \phi(x)^Tq^T}{\alpha \beta + \beta^2 v} t + \frac{(\alpha\beta+\beta^2 m_3)t_{sum}-\beta^2qq^T}{\alpha \beta + \beta^2 v}}{2(\alpha +\beta m_3)} =(\alpha \beta + \beta^2 v)\frac{ (t -\frac{\beta^2 \phi(x)^Tq^T}{\alpha \beta + \beta^2 v})^2 -\frac{(\beta^2 \phi(x)^Tq^T)^2}{(\alpha \beta + \beta^2 v)^2} + \frac{(\alpha\beta+\beta^2 m_3)t_{sum}-\beta^2qq^T}{\alpha \beta + \beta^2 v}}{2(\alpha +\beta m_3)} \\ t_{sum} = \sum_{n=1}^Nt_n^2\\ q = \sum_{n=1}^Nt_n\phi(x_n)^T\\ v = \sum_{n=1}^N\phi(x_n)^T\phi(x_n) 2(α+βm3)β(α+βm3)m541β2m42=2(α+βm3)β(α+βm3)(t2+tsum)41β2(2((x)T+n=1Ntnϕ(xn)T))2=2(α+βm3)β(α+βm3)(t2+tsum)β2((x)T+q)2=2(α+βm3)[αβ+β2m3β2ϕ(x)Tϕ(x)]t22β2ϕ(x)TqTt+(αβ+β2m3)tsumβ2qqT=2(α+βm3)[αβ+β2v]t22β2ϕ(x)TqTt+(αβ+β2m3)tsumβ2qqT=(αβ+β2v)2(α+βm3)t22αβ+β2vβ2ϕ(x)TqTt+αβ+β2v(αβ+β2m3)tsumβ2qqT=(αβ+β2v)2(α+βm3)(tαβ+β2vβ2ϕ(x)TqT)2(αβ+β2v)2(β2ϕ(x)TqT)2+αβ+β2v(αβ+β2m3)tsumβ2qqTtsum=n=1Ntn2q=n=1Ntnϕ(xn)Tv=n=1Nϕ(xn)Tϕ(xn)
故,我们可以从上式中,直接推出均值
m ( x ) = β 2 ϕ ( x ) T q T α β + β 2 v = β ϕ ( x ) T q T α + β v = ( α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) − 1 ( β ϕ ( x ) T ∑ n = 1 N ϕ ( x n ) t n ) = β ϕ ( x ) T S ∑ n = 1 N ϕ ( x n ) t n S − 1 = α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) m(x)=\frac{\beta^2 \phi(x)^Tq^T}{\alpha \beta + \beta^2 v} = \frac{\beta \phi(x)^Tq^T}{\alpha + \beta v} = (\alpha+\beta \sum_{n=1}^N\phi(x_n)^T\phi(x_n))^{-1}(\beta\phi(x)^T\sum_{n=1}^{N}\phi(x_n)t_n) = \beta \phi(x)^TS\sum_{n=1}^{N}\phi(x_n)t_n\\ S^{-1} = \alpha+\beta \sum_{n=1}^N\phi(x_n)^T\phi(x_n) m(x)=αβ+β2vβ2ϕ(x)TqT=α+βvβϕ(x)TqT=(α+βn=1Nϕ(xn)Tϕ(xn))1(βϕ(x)Tn=1Nϕ(xn)tn)=βϕ(x)TSn=1Nϕ(xn)tnS1=α+βn=1Nϕ(xn)Tϕ(xn)
倘若上述配方成功,方差为
s 2 ( x ) = α + β m 3 α β + β 2 v = α + β ( ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) α β + β 2 ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) = α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) + β ϕ ( x ) T ϕ ( x ) α β + β 2 ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) = 1 β + ϕ ( x ) T ϕ ( x ) α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) = β − 1 + S ϕ ( x ) T ϕ ( x ) s^2(x)=\frac{\alpha + \beta m_3}{\alpha \beta + \beta^2 v} = \frac{\alpha+\beta(\phi(x)^T\phi(x) + \sum_{n=1}^N\phi(x_n)^T\phi(x_n))}{\alpha\beta + \beta^2\sum_{n=1}^N\phi(x_n)^T\phi(x_n) } =\frac{\alpha+\beta\sum_{n=1}^N\phi(x_n)^T\phi(x_n) + \beta \phi(x)^T\phi(x)}{\alpha\beta + \beta^2\sum_{n=1}^N\phi(x_n)^T\phi(x_n) }\\ =\frac{1}{\beta} + \frac{\phi(x)^T\phi(x)}{\alpha + \beta \sum_{n=1}^N\phi(x_n)^T\phi(x_n) }\\ = \beta^{-1} + S\phi(x)^T\phi(x) s2(x)=αβ+β2vα+βm3=αβ+β2n=1Nϕ(xn)Tϕ(xn)α+β(ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn))=αβ+β2n=1Nϕ(xn)Tϕ(xn)α+βn=1Nϕ(xn)Tϕ(xn)+βϕ(x)Tϕ(x)=β1+α+βn=1Nϕ(xn)Tϕ(xn)ϕ(x)Tϕ(x)=β1+(x)Tϕ(x)

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值