DL-分类问题

问题描述

绿色点逐渐学习红色点

建立数据集

创建一些假数据来模拟真实的情况. 比如两个二次分布的数据, 不过均值都不一样.

import torch
import matplotlib.pyplot as plt

# 假数据
n_data = torch.ones(100, 2)         # 数据的基本形态
x0 = torch.normal(2*n_data, 1)      # 类型0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100)               # 类型0 y data (tensor), shape=(100, )
x1 = torch.normal(-2*n_data, 1)     # 类型1 x data (tensor), shape=(100, 1)
y1 = torch.ones(100)                # 类型1 y data (tensor), shape=(100, )

# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # LongTensor = 64-bit integer

# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()

# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

注:后面的x和Y的type是标定的

x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  
y = torch.cat((y0, y1), ).type(torch.LongTensor)   

运行结果

绿色1红色0

建立神经网络

import torch
import torch.nn.functional as F     # 激励函数都在这

class Net(torch.nn.Module):     # 继承 torch 的 Module
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()     # 继承 __init__ 功能
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出
        self.out = torch.nn.Linear(n_hidden, n_output)       # 输出层线性输出

    def forward(self, x):
        # 正向传播输入值, 神经网络分析出输出值
        x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)
        x = self.out(x)                 # 输出值, 但是这个不是预测值, 预测值还需要再另外计算
        return x

net = Net(n_feature=2, n_hidden=10, n_output=2) # 几个类别就几个 output

print(net)  # net 的结构
"""
Net (
  (hidden): Linear (2 -> 10)
  (out): Linear (10 -> 2)
)
"""

训练网络(调整网络参数和学习率)

# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 传入 net 的所有参数, 学习率
# 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,)
# 但是预测值是2D tensor (batch, n_classes)
loss_func = torch.nn.CrossEntropyLoss()#适用于多分类

for t in range(100):
    out = net(x)     # 喂给 net 训练数据 x, 输出分析值

    loss = loss_func(out, y)     # 计算两者的误差

    optimizer.zero_grad()   # 清空上一步的残余更新参数值
    loss.backward()         # 误差反向传播, 计算参数更新值
    optimizer.step()        # 将参数更新值施加到 net 的 parameters 上

注:如果是3分类,结果可能是[0.1,0.2,0.7],总和=1,标签误差[0,0,1]是就是1

可视化训练过程

import matplotlib.pyplot as plt

plt.ion()   # 画图
plt.show()

for t in range(100):#步长100
    #预测
    #计算误差
    #梯度清0
    ...
    loss.backward()#误差反向传递
    optimizer.step()#把梯度施加到神经网络的参数上去

    # 接着上面来
    if t % 2 == 0:
        plt.cla()
        # 过了一道 softmax 的激励函数后的最大概率才是预测值
        prediction = torch.max(F.softmax(out), 1)[1]
        pred_y = prediction.data.numpy().squeeze()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = sum(pred_y == target_y)/200.  # 预测中有多少和真实值一样
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color':  'red'})
        plt.pause(0.1)

plt.ioff()  # 停止画图
plt.show()

注:经过softmax(out)激活层转换成概率,概率之和=1,真正概率

运行结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想离开浪浪山去远方看看

希望所有努力和认真都有好的回馈

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值