GMC: Graph-based Multi-view Clustering(TKDE2019)
论文链接:https://ieeexplore.ieee.org/abstract/document/8662703/
1. 论文主要贡献
提出了一种通用的基于图的multi-view聚类方法(GMC),用于解决现有方法的一些限制。GMC自动加权每个视图,共同学习每个视图的图和融合图,并在融合后立即生成最终簇,不需要引入另外的spectral聚类方法,值得注意的是,每个视图图的学习和融合图的学习可以互相增强。
2. 论文主要内容
2.1 Introduction
这里主要提及了现有的一些基于图的multi-view聚类方法的限制,主要有三点:
◆ 在一些方法中并未考虑不同view的重要性的差异——融合过程中权重问题;
◆ 许多现有方法都需要额外的聚类步骤以在融合后产生最终的聚类;
◆ 目前大多数方法都是单独构造每个视图的图,并在融合过程中将构造的图固定下来。
针对上述三点限制,本文提出了相应的解决方案:
◆ 自动生成权重w;
◆ 通过对图的拉普拉斯矩阵施加秩约束,自动生成聚类结果;
◆ 本文提出的方法以互相增强的方式共同构造每个视图图和融合图,此处的互相增强是从最终目标函数中体现出来的,后面将会介绍。
2.2 Related Work
这部分内容我认为作者写的一般,在这里我总结一下图聚类,谱聚类。

提出一种基于图的多视图聚类方法GMC,解决现有方法的限制,包括视图权重问题、额外聚类步骤需求及视图图独立构建问题。GMC自动生成权重,通过拉普拉斯矩阵施加秩约束直接生成聚类结果,各视图图与融合图的学习互相增强。
最低0.47元/天 解锁文章
4064

被折叠的 条评论
为什么被折叠?



