Mutil-View Clustering

多视图聚类:利用不同视图间的差异性和互补性的信息来对数据进行聚类;关键问题在于如何有效地利用多个视图的信息,发挥各视图的优势,减少各视图的局限,从而获得准确且稳健的聚类性能。

两个原则:一致性原则和互补性原则

常见的方法:1、基于协同学习的方法

                      2、基于子空间的方法

                      3、基于多核学习的方法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值