RNN&LSTM 简介
https://blog.csdn.net/mzpmzk/article/details/80548927
交叉熵
一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉
https://blog.csdn.net/tsyccnh/article/details/79163834
交叉熵是谁最早提出和应用的?
http://blog.sciencenet.cn/blog-2056-1101769.html
交叉熵wikipedia介绍:
https://en.wikipedia.org/wiki/Cross_entropy
sigmoid
机器学习之sigmoid函数
https://www.jianshu.com/p/506595ec4b58
均方误差 (Mean Squared Error)均方误差
http://blog.sina.com.cn/s/blog_57a1cae80101bh65.html
one-hot encoding
https://blog.csdn.net/u010916338/article/details/81116817
n-hot(many hot)
https://stackoverflow.com/questions/50599988/implement-n-hot-encoding-in-tf-slim
https://stackoverflow.com/questions/51462420/many-hot-n-hot-encoding-quick-pandas-approach
可参考复旦大学邱锡鹏的讲义
https://github.com/nndl/nndl.github.io/blob/master/chap-循环神经网络.pdf
RNN梯度消失和爆炸的原因
https://zhuanlan.zhihu.com/p/28687529
LSTM如何解决梯度消失问题
https://zhuanlan.zhihu.com/p/28749444
diag()函数功能
https://blog.csdn.net/porly/article/details/7872313
BPTT算法推导
http://www.cnblogs.com/wacc/p/5341670.html
https://www.cnblogs.com/zhbzz2007/p/6339346.html
https://www.jianshu.com/p/2aca6e8ac7c8
零基础入门深度学习