[Python人工智能] 四十五.命名实体识别 (6)利用keras构建CNN-BiLSTM-ATT-CRF实体识别模型(注意力问题探讨)

本文介绍了如何使用keras和tensorflow构建CNN-BiLSTM-ATT-CRF模型进行中文实体识别,详细探讨了注意力机制的构建及其常见错误,提供完整代码和实验结果,适合初学者了解和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。这篇文章将详细结合如何利用keras和tensorflow构建基于注意力机制的CNN-BiLSTM-ATT-CRF模型,并实现中文实体识别研究,同时对注意力机制构建常见错误进行探讨。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!

  • 版本信息:python 3.7,tf 2.2.0,keras 2.3.1,bert4keras 0.11.5,keras-contrib=2.0.8

在这里插入图片描述

本专栏主要结合作者之前的博客、AI经验和相关视频及论文介绍,后面随着深入会讲解更多的Python人工智能案例及应用。基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵!作者作为人工智能的菜鸟,希望大家能与我在这一笔一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值