[Python人工智能] 四十五.命名实体识别 (6)利用keras构建CNN-BiLSTM-ATT-CRF实体识别模型(注意力问题探讨)

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。这篇文章将详细结合如何利用keras和tensorflow构建基于注意力机制的CNN-BiLSTM-ATT-CRF模型,并实现中文实体识别研究,同时对注意力机制构建常见错误进行探讨。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!

  • 版本信息:python 3.7,tf 2.2.0,keras 2.3.1,bert4keras 0.11.5,keras-contrib=2.0.8

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 以下是一个基于TensorFlow框架的CNN-BILSTM-CRF实体识别Python代码示例: ``` import tensorflow as tf from tensorflow.keras import Model, Input from tensorflow.keras.layers import Embedding, Conv1D, LSTM, Bidirectional, TimeDistributed, Dense, Dropout from tensorflow.keras_contrib.layers import CRF # 定义模型 class NERModel(Model): def __init__(self, num_tags, vocab_size, embedding_size, conv_filters, lstm_units, dropout_rate): super(NERModel, self).__init__() self.embedding = Embedding(input_dim=vocab_size, output_dim=embedding_size, mask_zero=True) self.conv1d = Conv1D(filters=conv_filters, kernel_size=3, padding='same', activation='relu') self.bilstm = Bidirectional(LSTM(units=lstm_units, return_sequences=True)) self.dropout = Dropout(rate=dropout_rate) self.dense = TimeDistributed(Dense(units=num_tags)) self.crf = CRF(num_tags) def call(self, inputs): embeddings = self.embedding(inputs) conv_output = self.conv1d(embeddings) lstm_output = self.bilstm(conv_output) dropout_output = self.dropout(lstm_output) dense_output = self.dense(dropout_output) crf_output = self.crf(dense_output) return crf_output # 模型参数 num_tags = 5 vocab_size = 10000 embedding_size = 100 conv_filters = 128 lstm_units = 64 dropout_rate = 0.5 # 构建模型 input_layer = Input(shape=(None,)) ner_model = NERModel(num_tags=num_tags, vocab_size=vocab_size, embedding_size=embedding_size, conv_filters=conv_filters, lstm_units=lstm_units, dropout_rate=dropout_rate) output_layer = ner_model(input_layer) model = Model(inputs=input_layer, outputs=output_layer) # 编译模型 model.compile(optimizer='adam', loss=ner_model.crf.loss_function, metrics=[ner_model.crf.accuracy]) # 训练模型 model.fit(train_X, train_y, validation_data=(val_X, val_y), epochs=10, batch_size=32) # 预测模型 pred_y = model.predict(test_X) ``` 需要注意的是,这只是一个基本的模型代码示例,具体实现可能会因为数据集、特征等因素而有所不同。此外,代码还需要调整以适应你的数据和模型需求。 ### 回答2: 实体识别是自然语言处理中的重要任务,CNN-BILSTM-CRF模型是一种常用于实体识别的深度学习模型。以下是一个简单的使用Python编写的CNN-BILSTM-CRF实体识别代码示例: ``` import numpy as np import tensorflow as tf import keras from keras.models import Model from keras.layers import Dense, Embedding, Input, Dropout, Conv1D, Bidirectional, LSTM, TimeDistributed from keras_contrib.layers import CRF from keras_contrib.metrics import crf_accuracy from keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import train_test_split # 准备数据 def prepare_data(sentences, labels, word_index, label_index, max_len): X = [] y = [] for sentence, label in zip(sentences, labels): # 转换句子和标签为索引序列 x = [word_index[word] for word in sentence] y = [label_index[label] for label in label] X.append(x) y.append(y) # 填充序列到相同长度 X = pad_sequences(X, maxlen=max_len) y = pad_sequences(y, maxlen=max_len) return X, y # 构建模型 def build_model(vocab_size, max_len, num_classes): input_layer = Input(shape=(max_len,)) embedding_layer = Embedding(vocab_size, 128, mask_zero=True)(input_layer) conv1d_layer = Conv1D(64, 3, activation='relu', padding='same')(embedding_layer) dropout_layer = Dropout(0.5)(conv1d_layer) bilstm_layer = Bidirectional(LSTM(128, return_sequences=True))(dropout_layer) dense_layer = Dense(num_classes, activation='softmax')(bilstm_layer) crf_layer = CRF(num_classes)(dense_layer) model = Model(inputs=input_layer, outputs=crf_layer) model.compile(optimizer='adam', loss=crf.loss_function, metrics=[crf.accuracy]) return model # 加载数据和标签 sentences = ['这 是 一个 实体 识别 例子', '这 是 另一个 实体 识别 例子'] labels = [['O', 'O', 'O', 'B-Entity', 'I-Entity', 'O'], ['O', 'O', 'B-Entity', 'I-Entity', 'O']] # 构建词汇表和标签表 words = set([word for sentence in sentences for word in sentence.split()]) word_index = {word: index + 1 for index, word in enumerate(words)} word_index['PAD'] = 0 labels = set([label for label_list in labels for label in label_list]) label_index = {label: index for index, label in enumerate(labels)} # 准备训练集和测试集 X, y = prepare_data(sentences, labels, word_index, label_index, max_len=10) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 构建模型 model = build_model(len(word_index), X.shape[1], len(label_index)) # 训练模型 model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=16, epochs=10) # 预测样本 test_sentence = '这是一个实体识别测试样本' test_data = np.array([word_index[word] for word in test_sentence.split()]).reshape(1, -1) prediction = model.predict(test_data) predicted_labels = [label_index[label] for label in np.argmax(prediction, axis=-1)[0]] actual_labels = ['O'] * len(predicted_labels) # 输出预测结果 for word, label in zip(test_sentence.split(), predicted_labels): print(word, label) ``` 此代码使用Keras建立了一个CNN-BILSTM-CRF模型,并使用CRF作为输出层。首先根据训练数据准备好词汇表和标签表,然后对训练样本进行编码并将其填充到相同长度。接下来构建模型,编译并训练模型。训练完成后,可以用新的样本进行预测,并输出预测结果。请注意,此代码仅提供了一个简单的示例,实际应用中可能需要进一步优化网络结构和超参数。 ### 回答3: 为了回答这个问题,我将提供一个简单的CNN-BiLSTM-CRF实体识别Python代码示例。在这个示例中,我们将使用Keras库来构建模型。 首先,我们需要导入所需的库: ```python import numpy as np from keras.models import Model from keras.layers import Input, Embedding, Conv1D, LSTM, TimeDistributed, Dense, Bidirectional, Dropout from keras_contrib.layers import CRF from keras.preprocessing.sequence import pad_sequences from keras_contrib.utils import save_load_utils ``` 接下来,我们定义一个函数来准备我们的数据集。这个函数将接受输入的句子列表和对应的实体标签列表,并将它们转换成适合模型输入的形式。 ```python def prepare_data(sentences, labels): word2idx = {w: i + 1 for i, w in enumerate(set([word for sentence in sentences for word in sentence]))} word2idx['PAD'] = 0 label2idx = {'O': 0, 'B': 1, 'I': 2} max_sequence_length = max([len(sentence) for sentence in sentences]) X = [[word2idx[word] for word in sentence] for sentence in sentences] y = [[label2idx[label] for label in sentence] for sentence in labels] X = pad_sequences(X, maxlen=max_sequence_length) y = pad_sequences(y, maxlen=max_sequence_length, value=label2idx['O']) y = np.eye(len(label2idx))[y] return X, y, word2idx, label2idx ``` 然后,我们定义CNN-BiLSTM-CRF模型: ```python def create_model(max_sequence_length, num_words, num_labels): input_text = Input(shape=(max_sequence_length,)) model = Embedding(input_dim=num_words, output_dim=100, input_length=max_sequence_length)(input_text) model = Dropout(0.2)(model) model = Conv1D(filters=100, kernel_size=3, padding='same', activation='relu')(model) model = Dropout(0.2)(model) model = Bidirectional(LSTM(units=100, return_sequences=True))(model) model = TimeDistributed(Dense(100, activation="relu"))(model) model = CRF(units=num_labels)(model) model = Model(input_text, model) model.compile(optimizer="rmsprop", loss=CRF.loss_function, metrics=[CRF.accuracy]) return model ``` 最后,我们准备数据并训练模型: ```python sentences = [['I', 'love', 'to', 'eat', 'pizza'], ['She', 'works', 'at', 'a', 'bank']] labels = [['O', 'O', 'O', 'O', 'B'], ['O', 'O', 'O', 'O', 'B']] X, y, word2idx, label2idx = prepare_data(sentences, labels) num_words = len(word2idx) num_labels = len(label2idx) model = create_model(X.shape[1], num_words, num_labels) model.fit(X, y, epochs=10, batch_size=1) save_load_utils.save_all_weights(model, 'entity_recognition_model.h5') ``` 以上是一个简单的CNN-BiLSTM-CRF实体识别Python代码示例。请注意,这只是一个示例,具体的实现可能根据数据集的不同而有所不同。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值