Kaggle | Allstate Claims Severity比赛总结

       Kaggle | Allstate Claims Severity是我参加Kaggle | Santander Product Recommendation顺带参加的一场比赛,比赛整个就花了两星期时间,

取得的成绩比预期好些73rd/3055 Top 3%,下面总结一下这场比赛。

题目要求:

       要求基于给出的数据预测保险赔偿。给出的训练数据是116(cat1-cat116)的离散数据和14列(con1-con14)的连续数据。

1.数据预处理:

       这题数据给的较规范,没有缺失值,所以没有进行预处理

2.算法模型

       xgboost对目标变量取log(x+200)(原因不是很清楚,可能是为了使目标变量分布更对称,易于训练)

       NN:4层神经网络(keras搭建)

3.特征工程:

       xgboost相关性高的离散特征组合编码

                      连续特征偏度较大的进行Box-Cox变换,标准化,取均值,极差,求和等

                      进行xgboost特征重要性选择

              NN:连续特征标准化

                      离散特征进行one hot coding,并压缩

4.参数调节:xgboost的损失函数设置,超参数挖掘和NN参数设置

5.Ensemble:

       本博主只对xgboost结果和NN结果进行加权平均,ensemble应该是这题的关键,排行榜上比较靠前的队伍应该都在ensemble下足了功夫,进行了stacking,本博主也吸取教训了。

6.其它解题思路(第一名)

         1名解题思路     2名解题思路    3名解题思路     4名解题思路

我的主要代码如下:

  • xgboost模型
import pandas as pd
import numpy as np
import xgboost as xgb
import datetime
import itertools
from scipy.stats import boxcox
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import KFold
from sklearn.metrics import mean_absolute_error
from sklearn import preprocessing

pd.options.mode.chained_assignment = None

multi_corr = [79,80,81,87,89,90,101,103,111]
two_corr = [2,3,9,10,11,12,13,23,36,57,72]
multi_cat_diff = [90,92,96,99,101,102,103,106,109,110,113,114,116]
skewed_num = [1,4,5,6,7,8,9,10,11,12,13]
cat2corr = [(29,30),(40,41),(43,45),(55,56),(8,65),(8,66),(104,106)]
two_avg1 = [1,2,3,4,5,6,7,9,10,11,12,13,14,16,23,24,25,26,27,28,36,38,40,44,50,53,57,72,73,76,79,80,81,82,87,89,90,103,111]

def logregobj(preds, dtrain):
    labels = dtrain.get_label()
    con = 2
    x = preds - labels
    grad = con * x / (np.abs(x) + con)
    hess = con ** 2 / (np.abs(x) + con) ** 2
    return grad, hess

def evalerror(preds, dtrain):
    labels = dtrain.get_label()
    return 'mae', mean_absolute_error(np.exp(preds), np.exp(labels))

def encode(charcode):
    r = 0
    ln = len(str(charcode))
    for i in range(ln):
        r += (ord(str(charcode)[i]) - ord('A'))
    return r + 1

def prepro(train,test,cont_feature):
    joined = pd.concat((train, test)).reset_index(drop=True)
    skewed_feats = ['cont' + str(i) for i in skewed_num]
    for feats in skewed_feats:
        joined[feats] = joined[feats] + 1
        joined[feats], lam = boxcox(joined[feats])

    multi_diff_feats = ['cat' + str(i) for i in multi_cat_diff]
    for column in multi_diff_feats:
        set_train = set(train[column].unique())
        set_test = set(test[column].unique())
        remove_train = set_train - set_test
        remove_test = set_test - set_train
        remove = remove_train.union(remove_test)
        def filter_cat(x):
            if x in remove:
                return np.nan
            return x
        joined[column] = joined[column].apply(lambda x: filter_cat(x), 1)

    ss = StandardScaler()
    joined[cont_feature] = ss.fit_transform(joined[cont_feature].values)
    del train,test
    return joined


def feature_extract(joined,cont_feature):
    features = pd.DataFrame()
    features['id'] = joined['id']
    features['loss'] = np.log(joined['loss'] + 200)

    cat_sel = [n for n in joined.columns if n.startswith('cat')]
    for column in cat_sel:
        features[column] = pd.factorize(joined[column].values , sort=True)[0] + 1

    for column in cont_feature:
        features[column] = joined[column]

    features['cont_avg'] = joined[cont_feature].mean(axis = 1)
    features['cont_min'] = joined[cont_feature].min(axis = 1)
    features['cont_max'] = joined[cont_feature].max(axis = 1)

    for i in [20,40,73]:
        cat_feats = ['cat' + str(i) for i in range(1,i)]
        idx = 'cat_' + 'sum_' + str(i)
        features[idx + '_A'] = joined[cat_feats].apply(lambda x: sum(x == 'A'), axis = 1)
        features[idx + '_B'] = joined[cat_feats].apply(lambda x: sum(x == 'B'), axis = 1)

    cat2_feats = [('cat' + str(i), 'cat' + str(j)) for (i, j) in cat2corr]
    for feat1,feat2 in cat2_feats:
        feat_comb = feat1 + '_' + feat2
        features[feat_comb] = joined[feat1] + joined[feat2]
        features[feat_comb] = features[feat_comb].apply(encode)

    cat2avg_feats = [ 'cat' + str(i) for i in two_avg1]
    for feat1,feat2 in itertools.combinations(cat2avg_feats,2):
        feat_comb = feat1 + '_' + feat2
        features[feat_comb] = joined[feat1] + joined[feat2]
        features[feat_comb] = features[feat_comb].apply(encode)

    train = features[features['loss'].notnull()]
    test = features[features['loss'].isnull()]
    del features, joined
    return train, test


def ceate_feature_map(features):
    outfile = open('xgb.fmap', 'w')
    i = 0
    for feat in features:
        outfile.write('{0}\t{1}\tq\n'.format(i, feat))
        i = i + 1
    outfile.close()

def feature_select(train,test):
    import operator
    params = {
        'min_child_weight': 100,
        'eta': 0.02,
        'colsample_bytree': 0.7,
        'max_depth': 12,
        'subsample': 0.7,
        'alpha': 1,
        'gamma': 1,
        'silent': 1,
        'objective': 'reg:linear',
        'verbose_eval': True,
        'seed': 12
    }
    rounds = 300
    y = train['loss']
    X = train.drop(['loss', 'id'], 1)

    xgtrain = xgb.DMatrix(X, label=y)
    bst = xgb.train(params, xgtrain, num_boost_round=rounds)

    feats = [x for x in train.columns if x not in ['id', 'loss']]
    print len(feats)
    outfile = open('xgb.fmap', 'w')
    i = 0
    for feat in feats:
        outfile.write('{0}\t{1}\tq\n'.format(i, feat))
        i = i + 1
    outfile.close()

    importance = bst.get_fscore(fmap='xgb.fmap')
    importance = sorted(importance.items(), key=operator.itemgetter(1), reverse = True)
    feats = [ a for (a,b) in importance]
    feats = feats[:450]
    print len(feats)
    df = pd.DataFrame(importance, columns=['feature', 'fscore'])
    df['fscore'] = df['fscore'] / df['fscore'].sum()
    df.to_csv("../input/feat_sel/feat_importance.csv", index = False)

    train1 = train[['id', 'loss'] + feats]
    test1 =  test[['id'] + feats]
    return train1, test1

def runXGB(train,test,index,RANDOM_STATE):
    train_index, test_index = index
    y = train['loss']
    X = train.drop(['loss', 'id'], 1)
    X_test = test.drop(['id'], 1)
    del train,test
    X_train, X_val = X.iloc[train_index], X.iloc[test_index]
    y_train, y_val = y.iloc[train_index], y.iloc[test_index]

    xgtrain = xgb.DMatrix(X_train, label=y_train)
    xgval = xgb.DMatrix(X_val, label=y_val)
    xgtest = xgb.DMatrix(X_test)
    X_val = xgb.DMatrix(X_val)

    params = {
        'min_child_weight': 10,
        'eta': 0.01,
        'colsample_bytree': 0.7,
        'max_depth': 12,
        'subsample': 0.7,
        'alpha': 1,
        'gamma': 1,
        'silent': 1,
        'verbose_eval': True,
        'seed': RANDOM_STATE
    }
    rounds = 3000

    watchlist = [(xgtrain, 'train'), (xgval, 'eval')]
    model = xgb.train(params, xgtrain, rounds, watchlist, obj=logregobj, feval=evalerror,early_stopping_rounds=100)

    cv_score = mean_absolute_error(np.exp(model.predict(X_val)) - 200, np.exp(y_val) - 200)
    predict = np.exp(model.predict(xgtest)) - 200
    print "iteration = %d"%(model.best_iteration)
    return predict, cv_score


if __name__ == '__main__':

    Generate_or_read = 0 # 0 generate
    feat_sel = 1         # 1 select
    start_time = datetime.datetime.now()
    if Generate_or_read == 0:
        print "generate features..."
        train = pd.read_csv('../input/train.csv')
        test = pd.read_csv('../input/test.csv')
        test['loss'] = np.nan
        cont_feature = [n for n in train.columns if n.startswith('cont')]
        joined = prepro(train,test,cont_feature)
        train,test = feature_extract(joined, cont_feature)
        print train.shape, test.shape
        print datetime.datetime.now() - start_time
        if feat_sel == 1:
            print "feature select..."
            train,test = feature_select(train,test)
        train.to_csv("../input/feature/train.csv",index = False)
        test.to_csv("../input/feature/test.csv", index=False)
        print train.shape, test.shape
        print datetime.datetime.now() - start_time

    else:
        print "read features..."
        train = pd.read_csv("../input/feature/train.csv")
        test = pd.read_csv("../input/feature/test.csv")
        print train.shape, test.shape

    print "run model..."
    nfolds = 10
    RANDOM_STATE = 113
    ids = test['id']
    predicts = np.zeros(ids.shape)
    kf = KFold(train.shape[0], n_folds = nfolds, shuffle = True, random_state = RANDOM_STATE)
    for i, index in enumerate(kf):
        print('Fold %d' % (i + 1))
        predict, cv_score = runXGB(train, test, index, RANDOM_STATE)
        print cv_score
        predicts += predict

    print datetime.datetime.now() - start_time
    predicts = predicts / nfolds
    submission = pd.DataFrame()
    submission['id'] = ids
    submission['loss'] = predicts
    submission.to_csv('../submit/submit_xgb.csv', index=False)
  • NN_keras模型
import numpy as np
import pandas as pd
import subprocess
from scipy.sparse import csr_matrix, hstack
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import KFold
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import PReLU

np.random.seed(123)

def batch_generator(X, y, batch_size, shuffle):
    number_of_batches = np.ceil(X.shape[0] / batch_size)
    counter = 0
    sample_index = np.arange(X.shape[0])
    if shuffle:
        np.random.shuffle(sample_index)
    while True:
        batch_index = sample_index[batch_size * counter:batch_size * (counter + 1)]
        X_batch = X[batch_index, :].toarray()
        y_batch = y[batch_index]
        counter += 1
        yield X_batch, y_batch
        if (counter == number_of_batches):
            if shuffle:
                np.random.shuffle(sample_index)
            counter = 0

def batch_generatorp(X, batch_size, shuffle):
    number_of_batches = X.shape[0] / np.ceil(X.shape[0] / batch_size)
    counter = 0
    sample_index = np.arange(X.shape[0])
    while True:
        batch_index = sample_index[batch_size * counter:batch_size * (counter + 1)]
        X_batch = X[batch_index, :].toarray()
        counter += 1
        yield X_batch
        if (counter == number_of_batches):
            counter = 0

## read data
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')

index = list(train.index)
train = train.iloc[index]
'train = train.iloc[np.random.permutation(len(train))]'

## set test loss to NaN
test['loss'] = np.nan

## response and IDs
y = np.log(train['loss'].values + 200)
id_train = train['id'].values
id_test = test['id'].values

## stack train test
ntrain = train.shape[0]
tr_te = pd.concat((train, test), axis=0)

## Preprocessing and transforming to sparse data
sparse_data = []

f_cat = [f for f in tr_te.columns if 'cat' in f]
for f in f_cat:
    dummy = pd.get_dummies(tr_te[f].astype('category'))
    tmp = csr_matrix(dummy)
    sparse_data.append(tmp)

f_num = [f for f in tr_te.columns if 'cont' in f]
scaler = StandardScaler()
tmp = csr_matrix(scaler.fit_transform(tr_te[f_num]))
sparse_data.append(tmp)

del (tr_te, train, test)

## sparse train and test data
xtr_te = hstack(sparse_data, format='csr')
xtrain = xtr_te[:ntrain, :]
xtest = xtr_te[ntrain:, :]

print('Dim train', xtrain.shape)
print('Dim test', xtest.shape)

del (xtr_te, sparse_data, tmp)

## neural net
def nn_model():
    model = Sequential()

    model.add(Dense(400, input_dim=xtrain.shape[1], init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Dense(200, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(50, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(1, init='he_normal'))
    model.compile(loss='mae', optimizer='adadelta')
    return (model)

## cv-folds
nfolds = 5
folds = KFold(len(y), n_folds=nfolds, shuffle=True, random_state=111)

## train models
i = 0
nbags = 10
nepochs = 55
pred_oob = np.zeros(xtrain.shape[0])
pred_test = np.zeros(xtest.shape[0])

for (inTr, inTe) in folds:
    xtr = xtrain[inTr]
    ytr = y[inTr]
    xte = xtrain[inTe]
    yte = y[inTe]
    pred = np.zeros(xte.shape[0])
    for j in range(nbags):
        model = nn_model()
        fit = model.fit_generator(generator=batch_generator(xtr, ytr, 128, True),
                                  nb_epoch=nepochs,
                                  samples_per_epoch=xtr.shape[0],
                                  validation_data=(xte.todense(), yte),
                                  verbose=0)
        temp = np.exp(
            model.predict_generator(generator=batch_generatorp(xte, 800, False), val_samples=xte.shape[0])[:, 0]) - 200
        pred += temp
        print(
        "Fold val bagging score after", j + 1, "rounds is: ", mean_absolute_error(np.exp(yte) - 200, pred / (j + 1)))
        pred_test += np.exp(
            model.predict_generator(generator=batch_generatorp(xtest, 800, False), val_samples=xtest.shape[0])[:,
            0]) - 200
    pred /= nbags
    pred_oob[inTe] = pred
    score = mean_absolute_error(np.exp(yte) - 200, pred)
    i += 1
    print('Fold ', i, '- MAE:', score)

print('Total - MAE:', mean_absolute_error(np.exp(y) - 200, pred_oob))

## train predictions
df = pd.DataFrame({'id': id_train, 'loss': pred_oob})
df.to_csv('preds_oob.csv', index=False)

## test predictions
pred_test /= (nfolds * nbags)
df = pd.DataFrame({'id': id_test, 'loss': pred_test})
df.to_csv('submission_keras_shift_perm.csv', index=False)

 GitHub:https://github.com/wenwu313/Kaggle-Solution

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值