AB实验的Variance Reduction

Brief

  • Attempt to understand the inherent uncertainty introduced by individual experimental units.
  • Estimate the pre-experiment individual variance for each unit.
  • For examle, if the target metric is "time spent by someone on the site per day", we could estimate the variance of a person's daily tiem spent during the month before the experiment and give more weight to those who previously exhibited lower variance (less noisy behaviors).

Outcome

average variance reduction of 17 percent, while bias is bounded with 2 percent

Implementation

estimate the variance for each unit

     unpooled estimators (using the pre-experiment user-level sampling variance), building a machine learning model to predict out-of-sample variance from features, and using Empirical-Bayes estimators to pool information across those using our platform.

Reference

Increasing the sensitivity of A/B tests by utilizing the variance estimates of experimental units

<think>好的,用户想了解GNSS方差缩减率的概念和计算方法。我需要先理解这个术语的具体含义,可能涉及GNSS定位中的误差处理或数据处理技术。 首先,GNSS方差缩减率(Variance Reduction Rate, VRR)可能是指在数据处理过程中,通过某种方法减少测量误差方差的比例。例如,在差分定位或使用滤波算法时,通过消除或校正某些误差源,方差会降低。这个比率可能用来衡量算法的有效性。 接下来,计算方法可能需要比较处理前后的方差值。比如,VRR = (原始方差 - 处理后的方差) / 原始方差 × 100%。需要确认是否有标准公式或行业内的常用计算方式。可能需要查阅相关文献或标准,但用户需要的是解释,而不是直接引用。 还需要考虑不同的应用场景,比如静态定位、动态定位,或者不同的误差源,如多路径效应、电离层延迟等,是否影响方差缩减率的计算。此外,是否有特定的算法或技术(如卡尔曼滤波、RTK)会涉及VRR的计算。 用户可能的应用背景是评估定位系统的性能,或者优化算法效果。需要确保解释清晰,结构合理,符合用户的需求。最后,生成相关问题时要围绕概念、计算、影响因素和应用展开。</think>### GNSS方差缩减率(Variance Reduction Rate, VRR) #### 概念 GNSS方差缩减率用于衡量定位系统中误差修正算法的性能,表示通过特定方法(如差分校正、滤波算法等)减少观测值方差的比率。其核心是通过消除或削弱系统误差(如电离层延迟、钟差等)提升定位精度[^1]。 #### 计算方法 1. **定义公式** 假设原始观测方差为 $\sigma_{\text{原始}}^2$,修正后的方差为 $\sigma_{\text{修正}}^2$,则方差缩减率为: $$ \text{VRR} = \left( 1 - \frac{\sigma_{\text{修正}}^2}{\sigma_{\text{原始}}^2} \right) \times 100\% $$ 当VRR接近100%时,表示误差修正效果显著。 2. **实际计算步骤** - **步骤1**:采集原始观测数据(如伪距、载波相位)的方差 $\sigma_{\text{原始}}^2$。 - **步骤2**:应用误差修正方法(如RTK、PPP或卡尔曼滤波)后,计算修正后的方差 $\sigma_{\text{修正}}^2$。 - **步骤3**:代入公式计算VRR值。 3. **示例** 若原始方差为 $0.25 \, \text{m}^2$,修正后为 $0.04 \, \text{m}^2$,则: $$ \text{VRR} = \left( 1 - \frac{0.04}{0.25} \right) \times 100\% = 84\% $$ #### 影响因素 - **误差类型**:对高度相关的系统误差(如卫星钟差)修正效果更好,VRR更高[^1]。 - **算法选择**:实时动态定位(RTK)通常比单点定位(SPP)的VRR更高。 - **观测环境**:多路径效应严重的场景可能降低VRR。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值