自用的线性代数与矩阵论笔记

大写字母表示矩阵(如 A A A),小写粗斜体表示向量(如 x \boldsymbol{x} x),正常字体表示标量或坐标点等(如 x 1 x_1 x1)。

向量

a × ( b × c ) = a × b × c = ( a × b × ) c = a × ( b × c ) ≠ ( a × b ) × c = a × b × c = ( a × b ) × c \begin{aligned} & a\times(b\times c)=a^\times b^\times c=(a^\times b^\times)c =a^\times(b^\times c) \\ \neq& (a\times b)\times c= a\times b\times c=(a^\times b)^\times c \\ \end{aligned} =a×(b×c)=a×b×c=(a×b×)c=a×(b×c)(a×b)×c=a×b×c=(a×b)×c
a × b × c ≠ a × b × c ( R a ) × b ≠ R ( a × b ) ( a × R ) b = a × ( R b ) a\times b\times c\neq a^\times b^\times c \\ (Ra)\times b\neq R(a\times b) \\ (a\times R)b= a\times (Rb) \\ a×b×c=a×b×c(Ra)×b=R(a×b)(a×R)b=a×(Rb)
( a × b ) × = b a T − a b T a × b × c = ( a T c ) b − ( a T b ) c (a^\times b)^\times=ba^T-ab^T \\ a^\times b^\times c=(a^Tc)b-(a^Tb)c (a×b)×=baTabTa×b×c=(aTc)b(aTb)c

方阵的迹

定义
tr ( A ) = ∑ i = 1 n ( a i i ) \text{tr}(A)=\sum_{i=1}^n(a_{ii}) tr(A)=i=1n(aii)
性质
tr ( A ) = tr ( A T ) tr ( A + B ) = tr ( A ) + tr ( B ) tr ( α A ) = α tr ( A ) tr ( A ) = ∑ i = 1 n λ i tr ( A B ) = tr ( B A ) tr ( A T A ) = ∑ i = 1 n ∑ j = 1 n a i j 2 \begin{aligned} & \text{tr}(A)=\text{tr}(A^{\text{T}}) \\ & \text{tr}(A+B)=\text{tr}(A)+\text{tr}(B) \\ & \text{tr}(\alpha A)=\alpha\text{tr}(A) \\ & \text{tr}(A)=\sum_{i=1}^n\lambda_i \\ & \text{tr}(AB)=\text{tr}(BA) \\ & \text{tr}(A^{\text{T}} A)=\sum_{i=1}^n\sum_{j=1}^n a_{ij}^2 \end{aligned} tr(A)=tr(AT)tr(A+B)=tr(A)+tr(B)tr(αA)=αtr(A)tr(A)=i=1nλitr(AB)=tr(BA)tr(ATA)=i=1nj=1naij2

矩阵的秩

  • A和B等价或相似或合同 ⇒ r ( A ) = r ( B ) \Rightarrow r(A)=r(B) r(A)=r(B)
  • r ( A ) = r ( A T ) = r ( A T A ) = r ( A A T ) = r ( k A ) r(A)=r(A^{\text{T}})=r(A^{\text{T}}A)=r(AA^{\text{T}})=r(kA) r(A)=r(AT)=r(ATA)=r(AAT)=r(kA)
  • A A A列满秩则 r ( A B ) = r ( B ) r(AB)=r(B) r(AB)=r(B),若 A A A行满秩则 r ( B A ) = r ( B ) r(BA)=r(B) r(BA)=r(B)
  • r ( A ± B ) ≤ r ( A ) + r ( B ) r(A\pm B)\le r(A)+r(B) r(A±B)r(A)+r(B)
  • r ( A ) + r ( B ) − n ≤ r ( A B ) ≤ min ⁡ { r ( A ) , r ( B ) } ≤ max ⁡ { r ( A ) , r ( B ) } ≤ r ( A ⋮ B ) ≤ r ( A ) + r ( B ) r(A)+r(B)-n\le r(AB)\le\min\{r(A), r(B)\}\le\max\{r(A), r(B)\}\le r(A\vdots B)\le r(A)+r(B) r(A)+r(B)nr(AB)min{r(A),r(B)}max{r(A),r(B)}r(AB)r(A)+r(B)
  • A B = O ⇒ r ( A ) + r ( B ) ≤ n AB=O\Rightarrow r(A)+r(B)\le n AB=Or(A)+r(B)n
  • 幂零阵: A k = O ⇒ r ( A ) < n A^k=O\Rightarrow r(A)<n Ak=Or(A)<n
  • 幂等阵: A 2 = A ⇒ r ( A ) + r ( I − A ) = n A^2=A\Rightarrow r(A)+r(I-A)=n A2=Ar(A)+r(IA)=n
  • 幂幺阵: A k = I ⇒ r ( A ) = n A^k=I\Rightarrow r(A)=n Ak=Ir(A)=n
  • r ( A O O B ) = r ( A ) + r ( B ) ≤ r ( A 0 C B ) ≤ r ( A ) + r ( B ) + r ( C ) r\left(\begin{array}{ll} A & O \\ O & B \end{array}\right)=r(A)+r(B) \leq r\left(\begin{array}{ll} A & 0 \\ C & B \end{array}\right) \leq r(A)+r(B)+r(C) r(AOOB)=r(A)+r(B)r(AC0B)r(A)+r(B)+r(C)
  • r ( A ∗ ) = { n ⇔ r ( A ) = n 1 ⇔ r ( A ) = n − 1 0 ⇔ r ( A ) < n − 1 r(A*)=\begin{cases} n \Leftrightarrow r(A)=n \\ 1 \Leftrightarrow r(A)=n -1 \\ 0 \Leftrightarrow r(A)<n -1 \\ \end{cases} r(A)= nr(A)=n1r(A)=n10r(A)<n1
  • 若A可逆,则 r ( A B ) = r ( B A ) = r ( B ) r(AB)=r(BA)=r(B) r(AB)=r(BA)=r(B)
  • A A A是n阶方阵则 r ( A ) ≥ μ ( A ) r(A)\ge\mu(A) r(A)μ(A) μ ( A ) \mu(A) μ(A)表示矩阵 A A A的非零特征值的个数;若 A A A可相似对角化则 r ( A ) = μ ( A ) r(A)=\mu(A) r(A)=μ(A)
  • A A A是正定或正交矩阵则 r ( A ) = n r(A)=n r(A)=n
  • m×n 矩阵 A 的秩为 r 的充分与必要条件为:存在 m 阶满秩矩阵 P 与 n 阶满秩矩阵 Q 使得
    P A Q = Λ = ( I r O O O ) PAQ=\Lambda=\left(\begin{matrix} I_r & O \\ O & O \end{matrix}\right) PAQ=Λ=(IrOOO)

r ( A ) = 1 r(A)=1 r(A)=1,则

  • ∣ λ I − A ∣ = λ n − tr ( A ) λ n − 1 |\lambda I-A|=\lambda^n-\text{tr}(A)\lambda^{n-1} λIA=λntr(A)λn1
  • λ 1 = tr ( A ) \lambda_1=\text{tr}(A) λ1=tr(A) λ 2 = ⋯ = λ n = 0 \lambda_2=\cdots=\lambda_n=0 λ2==λn=0
  • A 2 = tr ( A ) A A^2=\text{tr}(A)A A2=tr(A)A A n = ( tr ( A ) ) n − 1 A A^n=(\text{tr}(A))^{n-1}A An=(tr(A))n1A
  • (充要条件)存在非零向量 α \alpha α β \beta β使得 A = α β A=\alpha\beta A=αβ

特征值与特征向量

  • 特征值都是单值的矩阵一定可以对角化。
  • n阶矩阵有n个线性无关的特征向量是可以相似对角化的充分必要条件。
  • 实对称矩阵的不同特征值对应的特征向量两两正交。
  • 实对称矩阵可对角化,即必有n个线性无关的特征向量。
  • 不同特征值对应的特征向量线性无关。
  • 特征值相同的两个矩阵不一定相似。
  • λ 1 + λ 2 + ⋯ + λ n = tr ( A ) \lambda_1+\lambda_2+\cdots+\lambda_n=\text{tr}(A) λ1+λ2++λn=tr(A)
  • λ 1 λ 2 ⋯ λ n = ∣ A ∣ \lambda_1\lambda_2\cdots\lambda_n=|A| λ1λ2λn=A

A A A是 n 阶矩阵, λ 0 \lambda_0 λ0 A A A k k k阶特征值,则

  • k = 1 k=1 k=1,则属于特征值 λ 0 \lambda_0 λ0的线性无关的特征向量只有一个;
  • k > 1 k>1 k>1,则属于特征值 λ 0 \lambda_0 λ0的线性无关的特征向量不超过 k k k个。

分块矩阵

设矩阵 A A A是一个 n + m n+m n+m阶方阵,它具有分块三角阵的结构,即
A = [ A 11 A 12 0 A 22 ] 或 A = [ A 11 0 A 21 A 22 ] A=\left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array}\right]\text{或} A=\left[\begin{array}{cc} A_{11} & 0 \\ A_{21} & A_{22} \end{array}\right] A=[A110A12A22]A=[A11A210A22]
其中 A 11 A_{11} A11 A 22 A_{22} A22分别是n阶和m阶可逆方阵,这意味着 A 是可逆阵。利用
A − 1 A = A A − 1 = I n + m A^{-1}A=AA^{-1}=I_{n+m} A1A=AA1=In+m
可以推得
A − 1 = [ A 11 − 1 − A 11 − 1 A 12 A 22 − 1 0 A 22 − 1 ] A − 1 = [ A 11 − 1 0 − A 22 − 1 A 21 A 11 − 1 A 22 − 1 ] A^{-1}=\left[\begin{array}{cc} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{array}\right] \\ A^{-1}=\left[\begin{array}{cc} A_{11}^{-1} & 0 \\ -A_{22}^{-1}A_{21}A_{11}^{-1} & A_{22}^{-1} \end{array}\right] A1=[A1110A111A12A221A221]A1=[A111A221A21A1110A221]
一般地,若n+m阶方阵A可以写成分块形式
A = [ A 11 A 12 A 21 A 11 − 1 A 22 ] A=\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21}A_{11}^{-1} & A_{22} \end{array}\right] A=[A11A21A111A12A22]
其中 A 11 A_{11} A11 A 22 A_{22} A22具有与前相同的性质,那么利用矩阵分解关系式
A = [ I n 0 A 21 A 11 − 1 I m ] [ A 11 A 12 0 A 22 − A 21 A 11 − 1 A 12 ] A=\left[\begin{array}{cc} I_n & 0 \\ A_{21}A_{11}^{-1} & I_m \end{array}\right]\left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22}-A_{21}A_{11}^{-1}A_{12} \end{array}\right] A=[InA21A1110Im][A110A12A22A21A111A12]
A = [ I n A 12 A 22 − 1 0 I m ] [ A 11 − A 12 A 22 − 1 A 21 0 A 21 A 22 ] A=\left[\begin{array}{cc} I_n & A_{12}A_{22}^{-1} \\ 0 & I_m \end{array}\right]\left[\begin{array}{cc} A_{11}-A_{12}A_{22}^{-1}A_{21} & 0 \\ A_{21} & A_{22} \end{array}\right] A=[In0A12A221Im][A11A12A221A21A210A22]
和前面关于三角阵的求逆结果,可以推得矩阵 A 的分块求逆公式如下:
A − 1 = [ A 11 − 1 + A 11 − 1 A 12 A ~ 22 − 1 A 21 A 11 − 1 − A 11 − 1 A 12 A ~ 22 − 1 − A ~ 22 − 1 A 21 A 11 − 1 A ~ 22 − 1 ] A^{-1}=\left[\begin{array}{cc} A_{11}^{-1}+A_{11}^{-1}A_{12}\tilde{A}_{22}^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}\tilde{A}_{22}^{-1} \\ -\tilde{A}_{22}^{-1}A_{21}A_{11}^{-1} & \tilde{A}_{22}^{-1} \end{array}\right] A1=[A111+A111A12A~221A21A111A~221A21A111A111A12A~221A~221]
A − 1 = [ A ~ 11 − 1 − A ~ 11 − 1 A 12 A 22 − 1 − A 22 − 1 A 21 A ~ 11 − 1 A 22 − 1 + A 22 − 1 A 21 A ~ 11 − 1 A 12 A 22 − 1 ] A^{-1}=\left[\begin{array}{cc} \tilde{A}_{11}^{-1} & -\tilde{A}_{11}^{-1}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}\tilde{A}_{11}^{-1} & A_{22}^{-1}+A_{22}^{-1}A_{21}\tilde{A}_{11}^{-1}A_{12}A_{22}^{-1} \end{array}\right] A1=[A~111A221A21A~111A~111A12A221A221+A221A21A~111A12A221]
其中
A ~ 11 = A 11 − A 12 A 22 − 1 A 21 A ~ 22 = A 22 − A 21 A 11 − 1 A 12 \tilde{A}_{11}=A_{11}-A_{12}A_{22}^{-1}A_{21} \\ \tilde{A}_{22}=A_{22}-A_{21}A_{11}^{-1}A_{12} A~11=A11A12A221A21A~22=A22A21A111A12
假定矩阵A是可逆矩阵,因而 A ~ 11 − 1 \tilde{A}_{11}^{-1} A~111 A ~ 22 − 1 \tilde{A}_{22}^{-1} A~221总是存在的。根据逆矩阵的唯一性,对比两式立即得到(这附近的推导可能有问题)
( A 11 − A 12 A 22 − 1 A 21 ) − 1 = A 11 − 1 + A 11 − 1 A 12 A ~ 22 − 1 A 21 A 11 − 1 (A_{11}-A_{12}A_{22}^{-1}A_{21})^{-1}=A_{11}^{-1}+A_{11}^{-1}A_{12}\tilde{A}_{22}^{-1}A_{21}A_{11}^{-1} (A11A12A221A21)1=A111+A111A12A~221A21A111
A 22 − A 21 A 11 − 1 A 12 = A 22 − 1 + A 22 − 1 A 21 A ~ 11 − 1 A 12 A 22 − 1 A_{22}-A_{21}A_{11}^{-1}A_{12}=A_{22}^{-1}+A_{22}^{-1}A_{21}\tilde{A}_{11}^{-1}A_{12}A_{22}^{-1} A22A21A111A12=A221+A221A21A~111A12A221
这是两个非常重要的矩阵恒等式,在矩阵变换中经常用到。其中第一式习惯上称为矩阵反馈公式。

  • 若A和B是方阵,则
    ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|\cdot|B| AB=AB
    上式可用初等变换方法证明。
  • 若A和D是方阵,则
    ∣ A B 0 D ∣ = ∣ A ∣ ⋅ ∣ D ∣ \left|\begin{matrix}A & B \\ 0 & D\end{matrix}\right|=|A|\cdot|D| A0BD =AD
    QR分解法证明:
    ∣ A 0 0 D ∣ = ∣ A 0 0 I ∣ ∣ I 0 0 D ∣ = ∣ A ∣ ⋅ ∣ D ∣ ∣ A B 0 D ∣ = ∣ Q A 0 0 Q D ∣ ⋅ ∣ R A Q A T B 0 R D ∣ = ∣ Q A ∣ ⋅ ∣ Q D ∣ ⋅ ∣ R A ∣ ⋅ ∣ R D ∣ \begin{aligned} &\left|\begin{matrix}A & 0 \\ 0 & D\end{matrix}\right| =\left|\begin{matrix}A & 0 \\ 0 & I\end{matrix}\right| \left|\begin{matrix}I & 0 \\ 0 & D\end{matrix}\right| =|A|\cdot|D| \\ &\left|\begin{matrix}A & B \\ 0 & D\end{matrix}\right| =\left|\begin{matrix}Q_A & 0 \\ 0 & Q_D\end{matrix}\right| \cdot\left|\begin{matrix}R_A & Q_A^{\text{T}}B \\ 0 & R_D\end{matrix}\right| =|Q_A|\cdot|Q_D|\cdot|R_A|\cdot|R_D| \end{aligned} A00D = A00I I00D =AD A0BD = QA00QD RA0QATBRD =QAQDRARD
  • 若A和D是方阵且A可逆,则
    ∣ A B C D ∣ = ∣ A ∣ ⋅ ∣ D − C A − 1 B ∣ \left|\begin{matrix}A & B \\ C & D\end{matrix}\right| =|A|\cdot|D-CA^{-1}B| ACBD =ADCA1B
    若D可逆则
    ∣ A B C D ∣ = ∣ D ∣ ⋅ ∣ A − B D − 1 C ∣ \left|\begin{matrix}A & B \\ C & D\end{matrix}\right| =|D|\cdot|A-BD^{-1}C| ACBD =DABD1C
    证明
    ∣ A B C D ∣ = ∣ I 0 C A − 1 I ∣ ∣ A B 0 D − C A − 1 B ∣ = ∣ I B D − 1 0 I ∣ ∣ A − B D − 1 C 0 C D ∣ \begin{aligned} \left|\begin{matrix}A & B \\ C & D\end{matrix}\right| =& \left|\begin{matrix}I & 0 \\ CA^{-1} & I\end{matrix}\right| \left|\begin{matrix}A & B \\ 0 & D-CA^{-1}B\end{matrix}\right|\\ =& \left|\begin{matrix}I & BD^{-1} \\ 0 & I\end{matrix}\right| \left|\begin{matrix}A-BD^{-1}C & 0 \\ C & D\end{matrix}\right| \end{aligned} ACBD == ICA10I A0BDCA1B I0BD1I ABD1CC0D

矩阵的正定与负定

  设矩阵 A A A为n阶对称阵,如果对于所有n维列向量 x \boldsymbol{x} x,二次型 x T A x \boldsymbol{x}^{\text{T}} A\boldsymbol{x} xTAx均为非负,则称矩阵 A A A为非负定矩阵,并用 A ≥ 0 A\ge 0 A0来表示。进一步,如果矩阵 A A A为非负定矩阵,且对所有非零向量 x \boldsymbol{x} x,二次型 x T A x \boldsymbol{x}^{\text{T}}A\boldsymbol{x} xTAx总大于零,则称矩阵 A A A为正定阵,并且用 A > 0 A>0 A>0来表示。对称矩阵 A A A当且仅当其所有特征值非负时才是非负定阵;当且仅当特征值均为正时才是正定阵。显然,若矩阵 A A A为正定阵,则其逆矩阵存在且也为正定阵。
  如果 D D D是任意 n × m n\times m n×m阶矩阵,则 A = D D ′ A=DD' A=DD是非负定阵;当且仅当 D D D行满秩时, A = D D ′ A=DD' A=DD才是正定阵。
  如果 A A A B B B是同阶非负定阵, α \alpha α β \beta β为非负常数,则 α A + β B \alpha A+\beta B αA+βB为非负定阵;若 A A A B B B两者之一是正定阵而另一个为非负定阵且 α \alpha α β \beta β均大于零,则 α A + β B \alpha A+\beta B αA+βB是正定阵。设 A A A B B B分别为非负定阵和正定阵,称-A和- B B B分别是非正定阵和负定阵。非正定阵和负定阵分别与非负定阵和正定阵具有相反而类似的性质。
  几个名词:

  • 标准形
  • 规范形
  • 矩阵等价
  • 矩阵相似
  • 矩阵合同

  二次型的标准形的系数中正负系数的个数保持不变,分别称为二次型的正负惯性指数。 n n n阶实对称矩阵 A A A B B B的正负惯性指数相同是 A A A B B B合同的充分必要条件。
  记二次型 f ( x ) = x T A x f(\boldsymbol{x})=\boldsymbol{x}^{\text{T}} A\boldsymbol{x} f(x)=xTAx A A A n n n阶实对称矩阵,下列命题相互等价:

  • f f f是正定(负定)二次型
  • f f f的正(负)惯性指数为 n n n
  • A A A的特征值全为正(负)
  • A A A合同于 + I +I +I − I -I I
  • A A A的顺序主子式都大于0( A A A的奇数阶顺序主子式为负,偶数阶顺序主子式为正)
  • 存在可逆矩阵 B B B使得 A = B T B A=B^TB A=BTB
  • a i i > 0 a_{ii}>0 aii>0 i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n

内积与范数

向量范数:

  • 非负性:对所有 x ⃗ \vec{x} x 均有 ∣ ∣ x ⃗ ∣ ∣ ≥ 0 ||\vec{x}||\ge 0 ∣∣x ∣∣0;当且仅当 x ⃗ = 0 \vec{x}=0 x =0 时,才有 ∣ ∣ x ⃗ ∣ ∣ = 0 ||\vec{x}||=0 ∣∣x ∣∣=0
  • 齐次性: ∣ ∣ k x ⃗ ∣ ∣ = ∣ k ∣   ∣ ∣ x ⃗ ∣ ∣ ||k\vec{x}||=|k| \ ||\vec{x}|| ∣∣kx ∣∣=k ∣∣x ∣∣
  • 三角不等式 ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ ||A+B||\le||A|| + ||B|| ∣∣A+B∣∣∣∣A∣∣+∣∣B∣∣

矩阵范数除此以外还有次乘性:

  • 次乘性: ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ B ∣ ∣ ||AB||\le||A||\ ||B|| ∣∣AB∣∣∣∣A∣∣ ∣∣B∣∣

如果向量范数 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣和矩阵范数 ∣ ∣ A ∣ ∣ ||A|| ∣∣A∣∣满足 ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ x ∣ ∣ ||Ax||\le||A||\ ||x|| ∣∣Ax∣∣∣∣A∣∣ ∣∣x∣∣,则称相容。

矩阵的微分运算

矩阵微分运算有几种不同的情况。

矩阵函数对标量的导数

设n×m阶矩阵 A A A B B B和m×1阶矩阵 C C C的元素都是实变数t的函数, λ = λ ( t ) \lambda=\lambda(t) λ=λ(t) t t t的标量实值函数。定义矩阵 A A A t t t的导数等于 A A A的每个元素 a i j ( t ) a_{ij}(t) aij(t) t t t分别求导所构成的n×m阶矩阵,即
d A d t = [ d a i j ( t ) d t ] \frac{\text{d}A}{\text{d}t}=\left[\frac{\text{d}a_{ij}(t)}{\text{d}t}\right] dtdA=[dtdaij(t)]
比如,对于n维列向量 x = [ x 1 ( t )   x 2 ( t ) ⋯ x n ( t ) ] T \boldsymbol{x}=[x_1(t)\ x_2(t)\cdots x_n(t)]^{\text{T}} x[x1(t) x2(t)xn(t)]T,按定义就有
d x d t = [ d x 1 ( t ) d t d x 2 ( t ) d t ⋯ d x n ( t ) d t ] T \frac{\text{d}\boldsymbol{x}}{\text{d}t}=\left[\frac{\text{d}x_1(t)}{\text{d}t}\frac{\text{d}x_2(t)}{\text{d}t}\cdots\frac{\text{d}x_n(t)}{\text{d}t}\right]^{\text{T}} dtdx=[dtdx1(t)dtdx2(t)dtdxn(t)]T
关于矩阵函数对标量的导数,根据上述定义容易验证如下运算规则;
d ( A + B ) d t = d A d t + d B d t d ( λ A ) d t = d λ d t A + λ d A d t d ( A C ) d t = d A d t C + A d C d t \begin{aligned} &\frac{\text{d}(A+B)}{\text{d}t}=\frac{\text{d}A}{\text{d}t}+\frac{\text{d}B}{\text{d}t} \\ &\frac{\text{d}(\lambda A)}{\text{d}t}=\frac{\text{d}\lambda}{\text{d}t}A+\lambda\frac{\text{d}A}{\text{d}t} \\ &\frac{\text{d}(AC)}{\text{d}t}=\frac{\text{d}A}{\text{d}t}C+A\frac{\text{d}C}{\text{d}t} \end{aligned} dtd(A+B)=dtdA+dtdBdtd(λA)=dtdλA+λdtdAdtd(AC)=dtdAC+AdtdC

标量函数对矩阵的导数

f = f ( A ) f=f(A) f=f(A) g = g ( A ) g=g(A) g=g(A)是以矩阵 A A A的n×m个元素为自变量的标量定值函数。定义 f f f A A A的导数为如下 n × m n\times m n×m阶矩阵
d f d A ≜ [ ∂ f ∂ a i j ] \frac{\text{d}f}{\text{d}A}\triangleq\left[\frac{\partial f}{\partial a_{ij}}\right] dAdf[aijf]
对于上述这类微分运算,显然有
d ( f + g ) d A = d f d A + d g d A d ( f g ) d A = d f d A g + f d g d A \begin{aligned} &\frac{\text{d}(f+g)}{\text{d}A}=\frac{\text{d}f}{\text{d}A}+\frac{\text{d}g}{\text{d}A} \\ &\frac{\text{d}(fg)}{\text{d}A}=\frac{\text{d}f}{\text{d}A}g+f\frac{\text{d}g}{\text{d}A} \end{aligned} dAd(f+g)=dAdf+dAdgdAd(fg)=dAdfg+fdAdg

矩阵函数对向量的导数

F ( x ) F(\boldsymbol{x}) F(x)是n维列向量 x \boldsymbol{x} x m × l m\times l m×l阶矩阵函数,即 F ( x ) = ( f i j ( x ) ) m × l F(\boldsymbol{x})=(f_{ij}(\boldsymbol{x}))_{m×l} F(x)=(fij(x))m×l,而 x = [ x 1   x 2 ⋯ x n ] T \boldsymbol{x}=[x_1\ x_2\cdots x_n]^{\text{T}} x=[x1 x2xn]T。定义 F ( x ) F(\boldsymbol{x}) F(x) x \boldsymbol{x} x的导数为如下nm×l阶矩阵:
d F d x ≜ [ ∂ F ( x ) ∂ x 1 ⋮ ∂ F ( x ) ∂ x 2 ⋯ ⋮ ∂ F ( x ) ∂ x n ] T \frac{\text{d}F}{\text{d}\boldsymbol{x}}\triangleq[\frac{\partial F(\boldsymbol{x})}{\partial x_1}\vdots\frac{\partial F(\boldsymbol{x})}{\partial x_2}\cdots\vdots\frac{\partial F(\boldsymbol{x})}{\partial x_n}]^{\text{T}} dxdF[x1F(x)x2F(x)xnF(x)]T
其中
∂ F ( x ) ∂ x k ≜ ∂ f i j ( x ) ∂ x k \frac{\partial F(\boldsymbol{x})}{\partial x_k}\triangleq\frac{\partial f_ij(\boldsymbol{x})}{\partial x_k} xkF(x)xkfij(x)
对于这类运算,我们有
d F ( x ) + G ( x ) d x = d F ( x ) d x + d G ( x ) d x d ( F T ( x ) G ( x ) ) d x = d F T ( x ) d x G ( x ) + d G T ( x ) d x F ( x ) \begin{aligned} &\frac{\text{d}F(\boldsymbol{x})+G(\boldsymbol{x})}{\text{d}\boldsymbol{x}} =\frac{\text{d}F(\boldsymbol{x})}{\text{d}\boldsymbol{x}}+\frac{\text{d}G(\boldsymbol{x})}{\text{d}\boldsymbol{x}} \\ &\frac{\text{d}(F^{\text{T}}(\boldsymbol{x})G(\boldsymbol{x}))}{\text{d}\boldsymbol{x}} =\frac{\text{d}F^{\text{T}}(\boldsymbol{x})}{\text{d}\boldsymbol{x}}G(\boldsymbol{x})+\frac{\text{d}G^{\text{T}}(\boldsymbol{x})}{\text{d}\boldsymbol{x}}F(\boldsymbol{x}) \end{aligned} dxdF(x)+G(x)=dxdF(x)+dxdG(x)dxd(FT(x)G(x))=dxdFT(x)G(x)+dxdGT(x)F(x)

几个常用的矩阵微分公式

根据前面的定义,不难验证以下矩阵微分公式:

  • f = f ( x ) f=f(\boldsymbol{x}) f=f(x)是n维列向量 x \boldsymbol{x} x的标量定值函数,则有
    d f d t = [ d f d x ] T d x d t \frac{\text{d}f}{\text{d}t}=\left[\frac{\text{d}f}{\text{d}\boldsymbol{x}}\right]^{\text{T}} \frac{\text{d}\boldsymbol{x}}{\text{d}t} dtdf=[dxdf]Tdtdx
    式中t为实变数。
  • x \boldsymbol{x} x为n维列向量, a \boldsymbol{a} a B B B分别为与 x \boldsymbol{x} x无关的m维列向量和m×n阶矩阵,f为 x \boldsymbol{x} x的一个二次型,且
    f = ( a + B x ) T ( a + B x ) f=(\boldsymbol{a}+B\boldsymbol{x})^{\text{T}}(\boldsymbol{a}+B\boldsymbol{x}) f=(a+Bx)T(a+Bx)
    则有
    d ( a + B x ) d x = B T d f d x = 2 B T ( a − B x ) \begin{aligned} &\frac{\text{d}(\boldsymbol{a}+B\boldsymbol{x})}{\text{d}\boldsymbol{x}}=B^{\text{T}} \\ &\frac{\text{d}f}{\text{d}\boldsymbol{x}}=2B^{\text{T}}(\boldsymbol{a}-B\boldsymbol{x}) \end{aligned} dxd(a+Bx)=BTdxdf=2BT(aBx)
  • A A A为n阶方阵,其元素是实变数t的函数,且对所有的t, A − 1 A^{-1} A1存在,则有
    d A − 1 d t = − A − 1 d A d t A − 1 \frac{\text{d}A^{-1}}{\text{d}t}=-A^{-1}\frac{\text{d}A}{\text{d}t}A^{-1} dtdA1=A1dtdAA1
    此式可通过恒等式
    d I n d t = d A A − 1 d t = 0 \frac{\text{d}I_n}{\text{d}t}=\frac{\text{d}AA^{-1}}{\text{d}t}=0 dtdIn=dtdAA1=0
    导出。
  • 设,则有的解为矩阵 A A A的伪迹。式中星号*表示转置兼取复数共轭。
  • 其它常用公式

d x T d x = d x d x T = I n d ( x T A x ) d x = ( A + A T ) x d ( x T A x ) d A = x x T d J d X = d ( α T X β ) d X = α β T e x p \begin{aligned} &\frac{\text{d}\boldsymbol{x}^{\text{T}}}{\text{d}\boldsymbol{x}} =\frac{\text{d}\boldsymbol{x}}{\text{d}\boldsymbol{x}^{\text{T}}}=I_n \\ & \frac{\text{d}(\boldsymbol{x}^{\text{T}}\mathbf{A}\boldsymbol{x})}{\text{d}\boldsymbol{x}} =(\mathbf{A}+\mathbf{A}^{\text{T}})\boldsymbol{x} \\ &\frac{\text{d}(\boldsymbol{x}^{\text{T}}\mathbf{A}\boldsymbol{x})}{\text{d}\mathbf{A}} =\boldsymbol{x}\boldsymbol{x}^{\text{T}} \\ &\frac{\text{d}J}{\text{d}\mathbf{X}} =\frac{\text{d}(\boldsymbol{\alpha}^{\text{T}}\mathbf{X}\boldsymbol{\beta})}{\text{d}\mathbf{X}} =\boldsymbol{\alpha}\boldsymbol{\beta}^{\text{T}}exp \\ \end{aligned} dxdxT=dxTdx=Indxd(xTAx)=(A+AT)xdAd(xTAx)=xxTdXdJ=dXd(αTXβ)=αβTexp

矩阵函数及其导数的一些性质

定义
e A = I + A t + A 2 2 ! + A 3 3 ! + ⋯ sin ⁡ A = A − A 3 3 ! + A 5 5 ! − ⋯ cos ⁡ A = 1 − A 2 2 ! + A 4 4 ! + ⋯ ln ⁡ ( 1 + A ) = A − A 2 2 + A 3 3 − ⋯ ( 1 ) \begin{aligned} & \text{e}^{A}=I+At+\frac{A^2}{2!}+\frac{A^3}{3!}+\cdots \\ & \sin A=A-\frac{A^3}{3!}+\frac{A^5}{5!}-\cdots \\ & \cos A=1-\frac{A^2}{2!}+\frac{A^4}{4!}+\cdots\\ & \ln(1+A)=A-\frac{A^2}{2}+\frac{A^3}{3}-\cdots\qquad(1)\\ \end{aligned} eA=I+At+2!A2+3!A3+sinA=A3!A3+5!A5cosA=12!A2+4!A4+ln(1+A)=A2A2+3A3(1)
性质
A e A = e A A e A ⋅ e B = e B ⋅ e A = e A + B ( 2 ) ( e A ) − 1 = e − A e j A = cos ⁡ A + j sin ⁡ A e − A t = ( e A t ) − 1 e P − 1 A P t = P − 1 e A t P ln ⁡ ( e A ) = A ( 3 ) ln ⁡ ( A B ) = ln ⁡ A + ln ⁡ B ( 4 ) d d t e A t = A e A t = e A t A d d t ( A ( t ) B ( t ) ) = A ′ B + A B ′ d d t ( A 2 ( t ) ) = A ′ A + A A ′ ≠ 2 A A ′ d d t ( e A ( t ) ) ≠ A ′ ( t ) e A ( t ) ≠ e A ( t ) A ′ ( t ) ( 5 ) \begin{aligned} & A\text{e}^{A}=\text{e}^{A}A \\ & \text{e}^{A}\cdot\text{e}^{B}=\text{e}^{B}\cdot\text{e}^{A}=\text{e}^{A+B}\qquad(2) \\ & (\text{e}^{A})^{-1}=\text{e}^{-A} \\ & \text{e}^{jA}=\cos A+j\sin A \\ & \text{e}^{-At}=(\text{e}^{At})^{-1} \\ & \text{e}^{P^{-1}APt}=P^{-1}\text{e}^{At}P \\ & \ln(\text{e}^A)=A\qquad(3) \\ & \ln(AB)=\ln A+\ln B\qquad(4) \\ & \frac{\text{d}}{\text{d}t}\text{e}^{At}=A\text{e}^{At}=\text{e}^{At}A \\ & \frac{\text{d}}{\text{d}t}(A(t)B(t))=A'B+AB' \\ & \frac{\text{d}}{\text{d}t}(A^2(t))=A'A+AA'\neq2AA' \\ & \frac{\text{d}}{\text{d}t}(\text{e}^{A(t)})\neq A'(t)\text{e}^{A(t)}\neq\text{e}^{A(t)}A'(t)\qquad(5) \\ \end{aligned} AeA=eAAeAeB=eBeA=eA+B(2)(eA)1=eAejA=cosA+jsinAeAt=(eAt)1eP1APt=P1eAtPln(eA)=A(3)ln(AB)=lnA+lnB(4)dtdeAt=AeAt=eAtAdtd(A(t)B(t))=AB+ABdtd(A2(t))=AA+AA=2AAdtd(eA(t))=A(t)eA(t)=eA(t)A(t)(5)
注:
(1)需满足收敛域条件 ∣ A ∣ < 1 |A|<1 A<1
(2)需满足 A B = B A AB=BA AB=BA
(3)需满足 ∣ e A − I ∣ < 1 |\text{e}^A-I|<1 eAI<1
(4)需满足 ∣ A B − I ∣ < 1 |AB-I|<1 ABI<1 A B = B A AB=BA AB=BA
(5)仅当 A ′ A = A A ′ A'A=AA' AA=AA时才能为等号但一般不等。

常系数齐次/非齐次线性微分方程组

x ′ ( t ) = A x ( t ) x ( t ) = e A ( t − t 0 ) x ( t 0 ) x ′ ( t ) = A x ( t ) + f ( t ) x ( t ) = e A ( t − t 0 ) x ( t 0 ) + ∫ t 0 t e A ( t − τ ) f ( τ ) d τ \begin{aligned} & \boldsymbol{x}'(t)=A\boldsymbol{x}(t) \\ & \boldsymbol{x}(t)=\text{e}^{A(t-t_0)}\boldsymbol{x}(t_0) \\ & \boldsymbol{x}'(t)=A\boldsymbol{x}(t)+\boldsymbol{f}(t) \\ & \boldsymbol{x}(t)=\text{e}^{A(t-t_0)}\boldsymbol{x}(t_0) +\int_{t_0}^t\text{e}^{A(t-\tau)}\boldsymbol{f}(\tau)\text{d}\tau \\ \end{aligned} x(t)=Ax(t)x(t)=eA(tt0)x(t0)x(t)=Ax(t)+f(t)x(t)=eA(tt0)x(t0)+t0teA(tτ)f(τ)dτ
证明
x ′ − A x = f e − A t ( x ′ − A x ) = ( e − A t x ) ′ = e − A t f e − A t x ( t ) = ∫ t 0 t e − A τ f ( τ ) d τ + C C = e − A t 0 x ( t 0 ) x ( t ) = e A ( t − t 0 ) x ( t 0 ) + ∫ t 0 t e A ( t − τ ) f ( τ ) d τ \begin{aligned} & x'-Ax=f \\ & \text{e}^{-At}(x'-Ax)=(\text{e}^{-At}x)'=\text{e}^{-At}f \\ & \text{e}^{-At}x(t)=\int_{t_0}^t\text{e}^{-A\tau}f(\tau)\text{d}\tau+C \\ & C=\text{e}^{-At_0}x(t_0) \\ & x(t)=\text{e}^{A(t-t_0)}x(t_0)+\int_{t_0}^t\text{e}^{A(t-\tau)}f(\tau)\text{d}\tau \\ \end{aligned} xAx=feAt(xAx)=(eAtx)=eAtfeAtx(t)=t0teAτf(τ)dτ+CC=eAt0x(t0)x(t)=eA(tt0)x(t0)+t0teA(tτ)f(τ)dτ

矩阵的伪逆

设A为n×m阶矩阵,其元素可以是复数。我们称基于A形成的矩阵代数方程组

Jordan标准型

A = [ 3 1 − 1 1 2 − 1 2 1 0 ] A=\left[\begin{matrix} 3 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \end{matrix}\right] A= 312121110
方法一:
求矩阵的特征值和特征向量 f A ( λ ) = λ I − A = ( λ − 1 ) ( λ − 2 ) 2 f_A(\lambda)=\lambda I-A=(\lambda-1)(\lambda-2)^2 fA(λ)=λIA=(λ1)(λ2)2
对于矩阵 A A A的特征值 λ 0 \lambda_0 λ0
λ 0 \lambda_0 λ0的代数重数指 λ 0 \lambda_0 λ0作为特征多项式 f A ( λ ) f_A(\lambda) fA(λ)的根的重数。
λ 0 \lambda_0 λ0的几何重数指 λ 0 \lambda_0 λ0对应的特征向量的个数。
任一特征值的代数重数不小于它的几何重数。
λ = 1 \lambda=1 λ=1对应的特征向量为 [ 0 , 1 , 1 ] T [0,1,1]^\text{T} [0,1,1]T,代数重数1,几何重数1。
λ = 2 \lambda=2 λ=2对应的特征向量为 [ 1 , 0 , 1 ] T [1,0,1]^\text{T} [1,0,1]T,代数重数2,几何重数1。
将Jordan标准型写成 A P = P J AP=PJ AP=PJ的形式
J = [ 1 0 0 0 2 1 0 0 2 ] [ 3 1 − 1 1 2 − 1 2 1 0 ] [ 0 1 1 1 0 1 1 1 1 ] = [ 0 1 1 1 0 1 1 1 1 ] [ 1 0 0 0 2 1 0 0 2 ] \begin{aligned} J=&\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{matrix}\right] \\ \left[\begin{matrix} 3 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \end{matrix}\right] \left[\begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{matrix}\right] =&\left[\begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{matrix}\right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{matrix}\right] \end{aligned} J= 312121110 011101111 = 100020012 011101111 100020012
其中 P P P A A A的特征向量和广义特征向量组成。
方法二:
行列式因子 D k ( λ ) D_k(\lambda) Dk(λ):所有子式的最大公约数(3阶矩阵有4+4+1个2阶子式)。
不变因子 d k ( λ ) d_k(\lambda) dk(λ):n阶与n-1阶行列式因子的商。
初等因子:所有 ( λ − a ) b (\lambda-a)^b (λa)b 形式的项。
几个例子
行列式 D 1 = 1 , D 2 = λ − 1 , D 3 = ( λ − 1 ) 3 D_1=1,D_2=\lambda-1,D_3=(\lambda-1)^3 D1=1,D2=λ1,D3=(λ1)3
不变 d 1 = 1 , d 2 = λ − 1 , d 3 = ( λ − 1 ) 2 d_1=1,d_2=\lambda-1,d_3=(\lambda-1)^2 d1=1,d2=λ1,d3=(λ1)2
初等 λ − 1 , ( λ − 1 ) 2 \lambda-1,(\lambda-1)^2 λ1,(λ1)2
行列式 D 1 = 1 , D 2 = 1 , D 3 = ( λ − 1 ) ( λ − 2 ) 2 D_1=1,D_2=1,D_3=(\lambda-1)(\lambda-2)^2 D1=1,D2=1,D3=(λ1)(λ2)2
不变 d 1 = 1 , d 2 = 1 , d 3 = ( λ − 1 ) ( λ − 2 ) 2 d_1=1,d_2=1,d_3=(\lambda-1)(\lambda-2)^2 d1=1,d2=1,d3=(λ1)(λ2)2
初等 λ − 1 , ( λ − 2 ) 2 \lambda-1,(\lambda-2)^2 λ1,(λ2)2
λ \lambda λ 矩阵的初等变换之间等价,Smith标准型中的各个非零元素为不变因子。

矩阵分解

LU分解

[ 1 0 0 0 1 0 0 c 1 ] [ 1 0 0 a 1 0 b 0 1 ] A = U A = [ 1 0 0 a 1 0 b 0 1 ] − 1 [ 1 0 0 0 1 0 0 c 1 ] − 1 U = [ 1 0 0 − a 1 0 − b 0 1 ] [ 1 0 0 0 1 0 0 − c 1 ] U = [ 1 0 0 − a 1 0 − b − c 1 ] U \begin{aligned} &\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \\ \end{matrix}\right] \left[\begin{matrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \\ \end{matrix}\right]A=U \\ A=&\left[\begin{matrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \\ \end{matrix}\right]^{-1} \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \\ \end{matrix}\right]^{-1}U \\ =&\left[\begin{matrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ -b & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c & 1 \\ \end{matrix}\right]U =\left[\begin{matrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ -b & -c & 1 \\ \end{matrix}\right]U \end{aligned} A== 10001c001 1ab010001 A=U 1ab010001 1 10001c001 1U 1ab010001 10001c001 U= 1ab01c001 U

QR分解

A = [ 2 − 3 1 1 1 − 6 2 4 2 ] H = I − 2 ω ω T \begin{aligned} A=&\left[\begin{matrix} 2 & -3 & 1 \\ 1 & 1 & -6 \\ 2 & 4 & 2 \\ \end{matrix}\right] \\ H=&I-2\omega\omega^\text{T} \end{aligned} A=H= 212314162 I2ωωT
将第一列向量 [ 2 , 1 , 2 ] T [2,1,2]^\text{T} [2,1,2]T变换到x轴上并保持长度不变,即 [ 3 , 0 , 0 ] T [3,0,0]^\text{T} [3,0,0]T ω T = [ 2 , 1 , 2 ] − [ 3 , 0 , 0 ] = [ − 1 , 1 , 2 ] \omega^\text{T}=[2,1,2]-[3,0,0]=[-1,1,2] ωT=[2,1,2][3,0,0]=[1,1,2]后再取单位向量,代入 H H H,则。
H = [ 2 3 1 3 2 3 1 3 2 3 − 2 3 2 3 − 2 3 − 1 3 ] [ 2 1 2 ] = [ 3 0 0 ] H=\left[\begin{matrix} \displaystyle\frac{2}{3} & \displaystyle\frac{1}{3} & \displaystyle\frac{2}{3} \\ \displaystyle\frac{1}{3} & \displaystyle\frac{2}{3} & -\displaystyle\frac{2}{3} \\ \displaystyle\frac{2}{3} & -\displaystyle\frac{2}{3} & -\displaystyle\frac{1}{3} \\ \end{matrix}\right] \left[\begin{matrix} 2 \\ 1 \\ 2 \\ \end{matrix}\right] =\left[\begin{matrix} 3 \\ 0 \\ 0 \\ \end{matrix}\right] H= 323132313232323231 212 = 300

满秩分解

A = [ F ⋮ G ] , L F = I L A = C = [ I ⋮ L G ] , B = F B C = F [ I ⋮ L G ] = [ F ⋮ F L G ] = [ F ⋮ L F G ] = A A=[F\vdots G], LF=I \\ LA=C=[I\vdots LG], B=F \\ BC=F[I\vdots LG]=[F\vdots FLG]=[F\vdots LFG]=A A=[FG],LF=ILA=C=[ILG],B=FBC=F[ILG]=[FFLG]=[FLFG]=A

奇异值分解

A = U D V T V 1 = A T U 1 D − 1 U 1 = A V 1 D − 1 A=UDV^\text{T} \\ V_1=A^\text{T}U_1D^{-1} \\ U_1=AV_1D^{-1} \\ A=UDVTV1=ATU1D1U1=AV1D1

广义逆矩阵

  方程组有解称作相容,否则称为不相容或矛盾方程组。相容方程组的通解为
x = A − b + ( I − A − A ) z x=A^-b+(I-A^-A)z x=Ab+(IAA)z
其中 z z z是与 x x x同维的任意向量, A − A^- A A A A的任一减号逆,满足
A A − A = A AA^-A=A AAA=A
如果还另外满足 A − A A − = A − A^-AA^-=A^- AAA=A,则称 A − A^- A A A A的自反减号逆,记作 A r − A_r^- Ar。证明:
A x = A A − b + A ( I − A − A ) z = A A − b Ax = AA^-b+A(I-A^-A)z = AA^-b Ax=AAb+A(IAA)z=AAb
矩阵 A A A的左逆和右逆分别满足 $ A_L{-1}A=I$和$AA_R{-1}=I ,当 ,当 ,当A$分别列满秩和行满秩时,分别存在左逆和右逆
A L − 1 = ( A T A ) − 1 A T A R − 1 = A T ( A A T ) − 1 A_L^{-1} = (A^{\text{T}}A)^{-1}A^\text{T} \\ A_R^{-1} = A^\text{T}(AA^{\text{T}})^{-1} AL1=(ATA)1ATAR1=AT(AAT)1
且分别是列满秩和行满秩矩阵 A A A的自反减号逆 A r − A_r^- Ar,同时也是最小范数广义逆 A m − A_m^- Am、最小二乘广义逆 A l − A_l^- Al、加号逆 A + A^+ A+
  举例,方程组
{ x 1 + 2 x 2 + x 3 = 1 − x 2 + 2 x 3 = 2 , A x = b \begin{cases} x_1+2x_2+x_3 &= 1 \\ -x_2+2x_3 &= 2 \end{cases}, Ax=b {x1+2x2+x3x2+2x3=1=2,Ax=b
行满秩,可求其右逆 A R − 1 A_R^{-1} AR1为减号逆 A − A^- A,并求出通解。
A A A的加号逆为同时满足下面4个式子的矩阵,且唯一。
A G A = A G A G = G ( A G ) T = A G ( G A ) T = G A \begin{aligned} &AGA=A \\ &GAG=G \\ &(AG)^\text{T}=AG \\ &(GA)^\text{T}=GA \\ \end{aligned} AGA=AGAG=G(AG)T=AG(GA)T=GA

其他

  • 列满秩矩阵的列向量线性无关,一般为竖形状。列范数 ∣ ∣ A ∣ ∣ 1 ||A||_1 ∣∣A1指对每一列元素(每个列向量)的绝对值求和的最大值。
  • ∣ ∣ A ∣ ∣ m 1 ||A||_{m_1} ∣∣Am1范数是所有元素绝对值的和; ∣ ∣ A ∣ ∣ m 2 / ∣ ∣ A ∣ ∣ F ||A||_{m_2}/||A||_F ∣∣Am2/∣∣AF范数是所有元素平方和开根号; ∣ ∣ A ∣ ∣ m ∞ ||A||_{m_\infty} ∣∣Am范数是所有元素绝对值最大值×阶数。

( A + B C D ) − 1 = A − 1 − A − 1 B ( D A − 1 B + C − 1 ) − 1 D A − 1 ( A + u ⃗ u ⃗ T ) − 1 = A − 1 − A − 1 u ⃗ u ⃗ T A − 1 1 + u ⃗ T A − 1 u ⃗ \begin{aligned} (A+BCD)^{-1} =& A^{-1}-A^{-1} B (DA^{-1}B+C^{-1})^{-1}DA^{-1} \\ (A+\vec{u}\vec{u}^\text{T})^{-1} =& A^{-1} -\frac{A^{-1}\vec{u}\vec{u}^\text{T} A^{-1}} {1+\vec{u}^\text{T}A^{-1}\vec{u}} \end{aligned} (A+BCD)1=(A+u u T)1=A1A1B(DA1B+C1)1DA1A11+u TA1u A1u u TA1
a ⃗ × ( b ⃗ × c ⃗ ) = ( a ⃗ ⋅ c ⃗ ) b ⃗ − ( a ⃗ ⋅ b ⃗ ) c ⃗ \vec a\times(\vec b\times\vec c) =(\vec a\cdot\vec c)\vec b -(\vec a\cdot\vec b)\vec c a ×(b ×c )=(a c )b (a b )c
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ ⋅ c ⃗ ) b ⃗ − a ⃗ ( b ⃗ ⋅ c ⃗ ) (\vec a\times\vec b)\times\vec c =(\vec a\cdot\vec c)\vec b -\vec a(\vec b\cdot\vec c) (a ×b )×c =(a c )b a (b c )

参考

【Math for ML】矩阵分解(Matrix Decompositions)
分块矩阵的行列式

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值