自用的中学数学常用公式

三角函数

sin ⁡ x + sin ⁡ y = 2 sin ⁡ x + y 2 cos ⁡ x − y 2 sin ⁡ x − sin ⁡ y = 2 cos ⁡ x + y 2 sin ⁡ x − y 2 cos ⁡ x + cos ⁡ y = 2 cos ⁡ x + y 2 cos ⁡ x − y 2 cos ⁡ x − cos ⁡ y = − 2 sin ⁡ x + y 2 sin ⁡ x − y 2 sin ⁡ x sin ⁡ y = − 1 2 [ cos ⁡ ( x + y ) − cos ⁡ ( x − y ) ] cos ⁡ x cos ⁡ y = 1 2 [ cos ⁡ ( x + y ) + cos ⁡ ( x − y ) ] sin ⁡ x cos ⁡ y = 1 2 [ sin ⁡ ( x + y ) + sin ⁡ ( x − y ) ] sin ⁡ a = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \begin{aligned} & \sin x+\sin y= 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\ & \sin x-\sin y= 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\ & \cos x+\cos y= 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\ & \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} \\ & \sin x \sin y=-\frac{1}{2}[\cos (x+y)-\cos (x-y)] \\ & \cos x \cos y= \frac{1}{2}[\cos (x+y)+\cos (x-y)] \\ & \sin x \cos y= \frac{1}{2}[\sin (x+y)+\sin (x-y)] \\ & \sin a=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\ & \cos \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\ & \tan \alpha=\frac{2 \tan \frac{\alpha}{2}}{1-\tan ^{2} \frac{\alpha}{2}} \\ \end{aligned} sinx+siny=2sin2x+ycos2xysinxsiny=2cos2x+ysin2xycosx+cosy=2cos2x+ycos2xycosxcosy=2sin2x+ysin2xysinxsiny=21[cos(x+y)cos(xy)]cosxcosy=21[cos(x+y)+cos(xy)]sinxcosy=21[sin(x+y)+sin(xy)]sina=1+tan22α2tan2αcosα=1+tan22α1tan22αtanα=1tan22α2tan2α

多项式

( a + b ) 3 = ( a + b ) ( a 2 − a b + b 2 ) ( a + b ) n = ∑ k = 0 n C n k a k b n − k a n − b n = ( a − b ) ∑ k = 1 n a n − k b k − 1 \begin{aligned} & (a+b)^3=(a+b)(a^2-ab+b^2) \\ & (a+b)^n=\sum_{k=0}^nC_n^ka^kb^{n-k} \\ & a^n-b^n=(a-b)\sum_{k=1}^na^{n-k}b^{k-1} \\ \end{aligned} (a+b)3=(a+b)(a2ab+b2)(a+b)n=k=0nCnkakbnkanbn=(ab)k=1nankbk1
韦达定理:设复系数一元n次方程 a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 = 0 a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0 anxn+an1xn1++a1x+a0=0的根为 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,则成立
x 1 + x 2 + ⋯ + x n = ∑ i = 1 n x i = − a n − 1 a n x 1 x 2 ⋯ x n = ∏ i = 1 n x i = ( − 1 ) n a 0 a n x_{1}+x_{2}+\cdots+x_{n}=\sum_{i=1}^{n} x_{i}=-\frac{a_{n-1}}{a_{n}} \\ x_{1} x_{2} \cdots x_{n}=\prod_{i=1}^{n} x_{i}=(-1)^{n} \frac{a_{0}}{a_{n}} x1+x2++xn=i=1nxi=anan1x1x2xn=i=1nxi=(1)nana0

排列组合

C m n = m ! n ! ( m − n ) ! \begin{aligned} & C_m^n=\frac{m!}{n!(m-n)!} \\ \end{aligned} Cmn=n!(mn)!m!

数列

求数列通项公式的十一种方法

不等式

∣ x ∣ − ∣ y ∣ ⩽ ∣ x ± y ∣ ⩽ ∣ x ∣ + ∣ y ∣ 2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 |x|-|y| \leqslant|x \pm y| \leqslant|x|+|y| \\ \frac{2}{\frac{1}{a}+\frac{1}{b}}\le\sqrt{ab}\le\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}} xyx±yx+ya1+b12ab 2a+b2a2+b2
调和均值≤几何均值≤算术均值≤平方均值
柯西不等式,琴生Jensen不等式

极坐标

r = 2 cos ⁡ θ \begin{aligned} & r=2\cos\theta \\ \end{aligned} r=2cosθ

三余弦定理

  直角三角形 A B C ABC ABC 中,角 B B B 是直角, A B = 1 AB=1 AB=1 B D BD BD 垂直于三角形 A B C ABC ABC ∠ C A B = α , ∠ D A B = β , ∠ D A C = γ \angle CAB=\alpha,\angle DAB=\beta,\angle DAC=\gamma CAB=α,DAB=β,DAC=γ,那么
cos ⁡ γ = cos ⁡ α cos ⁡ β \cos\gamma=\cos\alpha\cos\beta cosγ=cosαcosβ
  证明: B C = tan ⁡ α , B D = tan ⁡ β , C D 2 = B C 2 + B D 2 = tan ⁡ 2 α + tan ⁡ 2 β , A C = 1 / cos ⁡ α , A D = 1 / cos ⁡ β BC=\tan\alpha,BD=\tan\beta,CD^2=BC^2+BD^2=\tan^2\alpha+\tan^2\beta,AC=1/\cos\alpha,AD=1/\cos\beta BC=tanα,BD=tanβ,CD2=BC2+BD2=tan2α+tan2β,AC=1/cosα,AD=1/cosβ
cos ⁡ γ = A D 2 + A C 2 − C D 2 2 A D ⋅ A C = 1 cos ⁡ 2 α + 1 cos ⁡ 2 β − ( tan ⁡ 2 α + tan ⁡ 2 β ) 2 ⋅ 1 cos ⁡ α ⋅ 1 cos ⁡ β = cos ⁡ 2 α + cos ⁡ 2 β − ( sin ⁡ 2 α cos ⁡ 2 β + sin ⁡ 2 β cos ⁡ 2 α ) 2 cos ⁡ α cos ⁡ β = cos ⁡ 2 α + cos ⁡ 2 β − ( ( 1 − cos ⁡ 2 α ) cos ⁡ 2 β + ( 1 − cos ⁡ 2 β ) cos ⁡ 2 α ) 2 cos ⁡ α cos ⁡ β = cos ⁡ 2 α cos ⁡ 2 β + cos ⁡ 2 β cos ⁡ 2 α 2 cos ⁡ α cos ⁡ β = cos ⁡ α cos ⁡ β \begin{aligned} \cos\gamma =& \frac{AD^2+AC^2-CD^2}{2AD\cdot AC} \\ =& \frac{\frac{1}{\cos^2\alpha}+\frac{1}{\cos^2\beta}-(\tan^2\alpha+\tan^2\beta)} {2\cdot\frac{1}{\cos\alpha}\cdot\frac{1}{\cos\beta}} \\ =& \frac{\cos^2\alpha+\cos^2\beta -(\sin^2\alpha\cos^2\beta+\sin^2\beta\cos^2\alpha)}{2\cos\alpha\cos\beta} \\ =& \frac{\cos^2\alpha+\cos^2\beta-((1-\cos^2\alpha)\cos^2\beta +(1-\cos^2\beta)\cos^2\alpha)}{2\cos\alpha\cos\beta} \\ =& \frac{\cos^2\alpha\cos^2\beta+\cos^2\beta\cos^2\alpha}{2\cos\alpha\cos\beta} \\ =& \cos\alpha\cos\beta \\ \end{aligned} cosγ======2ADACAD2+AC2CD22cosα1cosβ1cos2α1+cos2β1(tan2α+tan2β)2cosαcosβcos2α+cos2β(sin2αcos2β+sin2βcos2α)2cosαcosβcos2α+cos2β((1cos2α)cos2β+(1cos2β)cos2α)2cosαcosβcos2αcos2β+cos2βcos2αcosαcosβ

其他

三角形外切圆半径
R = a b c 4 S R=\frac{abc}{4S} R=4Sabc

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值