自用的概率论与统计笔记

随机事件

A ∩ B = A B , A ∪ B = A + B P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P ( A − B ) = P ( A B ‾ ) P ( A + B − C ) ≠ P ( A − C + B ) , P ( A + B − C ) ≠ P ( A + ( B − C ) ) P ( A ( B − C ) ) ≠ P ( A B − A C ) \begin{aligned} & A\cap B=AB,A\cup B=A+B \\ & P(A+B)=P(A)+P(B)-P(AB) \\ & P(A-B)=P(A\overline{B}) \\ & P(A+B-C)\neq P(A-C+B),P(A+B-C)\neq P(A+(B-C)) \\ & P(A(B-C))\neq P(AB-AC) \\ \end{aligned} AB=AB,AB=A+BP(A+B)=P(A)+P(B)P(AB)P(AB)=P(AB)P(A+BC)=P(AC+B),P(A+BC)=P(A+(BC))P(A(BC))=P(ABAC)
事件运算法则
A + A B = A , A − B = A B ‾ A ( B + C ) = A B + A C , A + B C = ( A + B ) ( A + C ) A + B + C = A + ( B + C ) A + B ‾ = A ‾ B ‾ , A B ‾ = A ‾ + B ‾ \begin{aligned} & A+AB=A,A-B=A\overline{B} \\ & A(B+C)=AB+AC,A+BC=(A+B)(A+C) \\ & A+B+C=A+(B+C) \\ & \overline{A+B}=\overline{A}\overline{B},\overline{AB}=\overline{A}+\overline{B} \\ \end{aligned} A+AB=A,AB=ABA(B+C)=AB+AC,A+BC=(A+B)(A+C)A+B+C=A+(B+C)A+B=AB,AB=A+B
独立 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B),不相容 P ( A + B ) = P ( A ) + P ( B ) P(A+B)=P(A)+P(B) P(A+B)=P(A)+P(B) A B = ∅ AB=\emptyset AB=

一元线性回归

y ( n ) = a ∗ x ( n ) + b ∗ J ( a , b ) = ∑ n = 1 N ( y ( n ) − a x ( n ) − b ) 2 \begin{aligned} & y(n)=a^*x(n)+b^* \\ & J(a,b)=\sum_{n=1}^N(y(n)-ax(n)-b)^2 \\ \end{aligned} y(n)=ax(n)+bJ(a,b)=n=1N(y(n)ax(n)b)2
∂ J ∂ b = − 2 ∑ n = 1 N [ y ( n ) − a x ( n ) − b ] = 0 ∑ n = 1 N y ( n ) − a ∑ n = 1 N x ( n ) − b n = 0 b = 1 N ( ∑ n = 1 N y ( n ) − a ∑ n = 1 N x ( n ) ) = y ˉ − a x ˉ ∂ J ∂ a = − 2 ∑ n = 1 N x ( n ) [ y ( n ) − a x ( n ) − b ] = 0 ∑ n = 1 N x ( n ) y ( n ) − a ∑ n = 1 N x 2 ( n ) − b ∑ n = 1 N x ( n ) = 0 ∑ n = 1 N x y − a ∑ x 2 − ∑ x ( ∑ y − a ∑ x ) = 0 ∑ x y − ∑ x ∑ y = a ∑ x 2 − a ∑ x ∑ x { a = ∑ n = 1 N x ( n ) y ( n ) − ∑ n = 1 N x ( n ) ∑ n = 1 N y ( n ) ∑ n = 1 N x 2 ( n ) − ( ∑ n = 1 N x ( n ) ) 2 b = y ˉ − a x ˉ \begin{aligned} & \frac{\partial J}{\partial b} = -2\sum_{n=1}^N[y(n)-ax(n)-b]=0 \\ & \sum_{n=1}^Ny(n)-a\sum_{n=1}^Nx(n)-bn=0 \\ & b=\frac{1}{N}\left(\sum_{n=1}^Ny(n)-a\sum_{n=1}^Nx(n)\right)=\bar{y}-a\bar{x} \\ & \frac{\partial J}{\partial a} = -2\sum_{n=1}^Nx(n)[y(n)-ax(n)-b]=0 \\ & \sum_{n=1}^Nx(n)y(n)-a\sum_{n=1}^Nx^2(n)-b\sum_{n=1}^Nx(n)=0 \\ & \sum_{n=1}^Nxy-a\sum x^2-\sum x \left(\sum y-a\sum x\right)=0 \\ & \sum xy-\sum x\sum y =a\sum x^2-a\sum x\sum x \\ &\begin{cases} a=\frac{\displaystyle\sum_{n=1}^Nx(n)y(n)-\sum_{n=1}^Nx(n)\sum_{n=1}^Ny(n)} {\displaystyle\sum_{n=1}^Nx^2(n)-\left(\sum_{n=1}^Nx(n)\right)^2} \\ b=\bar{y}-a\bar{x} \end{cases} \end{aligned} bJ=2n=1N[y(n)ax(n)b]=0n=1Ny(n)an=1Nx(n)bn=0b=N1(n=1Ny(n)an=1Nx(n))=yˉaxˉaJ=2n=1Nx(n)[y(n)ax(n)b]=0n=1Nx(n)y(n)an=1Nx2(n)bn=1Nx(n)=0n=1Nxyax2x(yax)=0xyxy=ax2axx a=n=1Nx2(n)(n=1Nx(n))2n=1Nx(n)y(n)n=1Nx(n)n=1Ny(n)b=yˉaxˉ

分布律

二项分布

X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)
设事件X发生的概率为p,进行n次实验,事件X发生k次的概率为 P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
E ( X ) = n p , D X = n p ( 1 − p ) E(X)=np,DX=np(1-p) E(X)=np,DX=np(1p)

几何分布

X ∼ G ( p ) X\sim G(p) XG(p)
设事件X发生的概率为p,事件X首次发生时的实验次数k满足 P ( X = k ) = p ( 1 − p ) k − 1 P(X=k)=p(1-p)^{k-1} P(X=k)=p(1p)k1

超几何分布

X ∼ H ( n , M , N ) X\sim H(n,M,N) XH(n,M,N)
N件产品中有m件次品,从中任取n件产品不放回,有X件次品的概率为
P ( X = k ) = C M k ⋅ C N − M n − k C N n P(X=k)=\frac{C_M^k\cdot C_{N-M}^{n-k}}{C_N^n} P(X=k)=CNnCMkCNMnk

泊松分布

X ∼ P ( λ ) X\sim P(\lambda) XP(λ)
P ( X = k ) = λ k e − λ k ! lim ⁡ N → + ∞ C M k ⋅ C N − M n − k C N n = C n k p k ( 1 − p ) n − k lim ⁡ n → + ∞ C n k p k ( 1 − p ) n − k = λ k e − λ k ! \begin{aligned} & P(X=k)=\frac{\lambda^k\text{e}^{-\lambda}}{k!} \\ & \lim_{N\to+\infty}\frac{C_M^k\cdot C_{N-M}^{n-k}}{C_N^n}=C_n^kp^k(1-p)^{n-k} \\ & \lim_{n\to+\infty}C_n^kp^k(1-p)^{n-k}=\frac{\lambda^k\text{e}^{-\lambda}}{k!} \\ \end{aligned} P(X=k)=k!λkeλN+limCNnCMkCNMnk=Cnkpk(1p)nkn+limCnkpk(1p)nk=k!λkeλ
证明如下
P ( X = k ) = C n k p k ( 1 − p ) n − k E ( x ) = n p = λ lim ⁡ n → + ∞ C n k p k ( 1 − p ) n − k = lim ⁡ n → + ∞ n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) k ! ( λ n ) k ( 1 − λ n ) n − k = λ k k ! lim ⁡ n → + ∞ 1 ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − k n ) ( 1 − λ n ) n ( 1 − λ n ) − k = λ k k ! lim ⁡ n → + ∞ ( 1 − λ n ) n = λ k e − λ k ! \begin{aligned} & P(X=k)=\text{C}_n^kp^k(1-p)^{n-k} \\ & \text{E}(x)=np=\lambda \\ &\lim_{n\rightarrow+\infty}\text{C}_n^kp^k(1-p)^{n-k} \\ =&\lim_{n\rightarrow+\infty}\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}\left(\frac{\lambda}{n}\right)^k\left(1-\frac{\lambda}{n}\right)^{n-k} \\ =&\frac{\lambda^k}{k!}\lim_{n\rightarrow+\infty}1(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k}{n})\left(1-\frac{\lambda}{n}\right)^n\left(1-\frac{\lambda}{n}\right)^{-k} \\ =&\frac{\lambda^k}{k!}\lim_{n\rightarrow+\infty}\left(1-\frac{\lambda}{n}\right)^n \\ =&\frac{\lambda^k\text{e}^{-\lambda}}{k!} \end{aligned} ====P(X=k)=Cnkpk(1p)nkE(x)=np=λn+limCnkpk(1p)nkn+limk!n(n1)(n2)(nk+1)(nλ)k(1nλ)nkk!λkn+lim1(1n1)(1n2)(1nk)(1nλ)n(1nλ)kk!λkn+lim(1nλ)nk!λkeλ

均匀分布

X ∼ U [ a , b ] X\sim U[a,b] XU[a,b]

指数分布

X ∼ e ( λ ) X\sim e(\lambda) Xe(λ)
f ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x)=\begin{cases} \lambda\text{e}^{-\lambda x} &, x\ge 0 \\ 0 &, x<0 \end{cases} f(x)={λeλx0,x0,x<0
指数分布与泊松分布的关系
P ( Y > t ) = P ( X = 0 , t ) = ( λ t ) 0 0 ! e − λ t = e − λ t , t ≥ 0 F ( x ) = 1 − e − λ x , x ≥ 0 \begin{aligned} & P(Y>t)=P(X=0,t)=\frac{\left(\lambda t\right)^0}{0!}e^{-\lambda t}=e^{-\lambda t},\quad t\ge 0 \\ & F(x)=1-\text{e}^{-\lambda x},x\ge 0 \\ \end{aligned} P(Y>t)=P(X=0,t)=0!(λt)0eλt=eλt,t0F(x)=1eλx,x0

正态分布

X ∼ N ( μ , σ ) f ( x ) = 1 2 π σ exp { − ( x − μ ) 2 2 σ 2 } Φ ( x ) = ∫ − ∞ x 1 2 π e − t 2 2 d t X\sim N(\mu,\sigma) \\ f(x)=\frac{1}{\sqrt{2\pi}\sigma} \text{exp}\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} \\ \Phi(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}\text{e}^{-\frac{t^2}{2}}\text{d}t XN(μ,σ)f(x)=2π σ1exp{2σ2(xμ)2}Φ(x)=x2π 1e2t2dt

数学期望和方差

Cov ( X , X ) = D X Cov ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X ⋅ E Y ρ x y = Cov ⁡ ( X , Y ) D X D Y E ( X ± Y ) = E X ± E Y D ( X ± Y ) = D X + D Y ± 2 Cov ( X , Y ) Cov ( X , Y 1 ± Y 2 ) = Cov ( X , Y 1 ) ± Cov ( X , Y 2 ) Cov ( X , k Y ) = k Cov ( X , Y ) \begin{aligned} \text{Cov}(X,X) &= \text{D}X \\ \text{Cov}(X,Y) &= \text{E}[(X-\text{E}X)(Y-\text{E}Y)] =\text{E}(XY)-\text{E}X\cdot\text{E}Y \\ \rho_{xy} &= \frac{\operatorname{Cov}(X, Y)}{\sqrt{\text{D} X} \sqrt{\text{D} Y}} \\ \text{E}(X\pm Y) &= \text{E}X\pm \text{E}Y \\ \text{D}(X\pm Y) &= \text{D}X+\text{D}Y\pm 2\text{Cov}(X,Y) \\ \text{Cov}(X,Y_1\pm Y_2) &= \text{Cov}(X,Y_1)\pm\text{Cov}(X,Y_2) \\ \text{Cov}(X,kY) &= k\text{Cov}(X,Y) \\ \end{aligned} Cov(X,X)Cov(X,Y)ρxyE(X±Y)D(X±Y)Cov(X,Y1±Y2)Cov(X,kY)=DX=E[(XEX)(YEY)]=E(XY)EXEY=DX DY Cov(X,Y)=EX±EY=DX+DY±2Cov(X,Y)=Cov(X,Y1)±Cov(X,Y2)=kCov(X,Y)

切比雪夫不等式

马尔可夫不等式
P { X > ε } ≤ E X ε P\{X>\varepsilon\}\le\frac{E X}{\varepsilon} P{X>ε}εEX
其中 X ≥ 0 X\ge0 X0
E x = ∫ 0 ∞ x f ( x ) d x ⩾ ∫ ε ∞ x f ( x ) d x ≥ ε ∫ ε ∞ f ( x ) d x = P { x ⩾ ε } \begin{aligned} E x &=\int_{0}^{\infty} x f(x) d x \\ & \geqslant \int_{\varepsilon}^{\infty} x f(x) d x \\ &\ge\varepsilon\int_{\varepsilon}^{\infty} f(x) d x \\ &=P\{x \geqslant \varepsilon\} \end{aligned} Ex=0xf(x)dxεxf(x)dxεεf(x)dx=P{xε}
切比雪夫不等式
P { ∣ X − E X ∣ ⩾ ε } ⩽ D X ε 2 P\left\{|X-EX|\geqslant \varepsilon\right\} \leqslant\frac{DX}{\varepsilon^{2}} P{XEXε}ε2DX

样本方差的无偏估计

1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 = 1 n − 1 ∑ i = 1 n [ ( x i − μ ) − ( x ˉ − μ ) ] 2 = 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 − 2 n − 1 ∑ i = 1 n ( x i − μ ) ( x ˉ − μ ) + 1 n − 1 ∑ i = 1 n ( x ˉ − μ ) 2 = 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 − 2 ( x ˉ − μ ) n − 1 ( n x ˉ − n μ ) + n n − 1 ( x ˉ − μ ) 2 = 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 − n n − 1 ( x ˉ − μ ) 2 E [ 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ] = E [ 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 − n n − 1 ( x ˉ − μ ) 2 ] = n n − 1 D x − n n − 1 ⋅ D x n = D x \begin{aligned} \frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2} &= \frac{1}{n-1}\sum_{i=1}^{n}[(x_{i}-\mu)-(\bar{x}-\mu)]^{2} \\ &=\frac{1}{n-1} \sum_{i=1}^{n}(x_{i}-\mu)^{2}-\frac{2}{n-1}\sum_{i=1}^{n}(x_{i}-\mu)(\bar{x}-\mu) +\frac{1}{n-1}\sum_{i=1}^{n}(\bar{x}-\mu)^{2} \\ &= \frac{1}{n-1} \sum_{i=1}^{n}(x_{i}-\mu)^{2}-\frac{2(\bar{x}-\mu)}{n-1}(n \bar{x}-n \mu)+\frac{n}{n-1}(\bar{x}-\mu)^{2} \\ &= \frac{1}{n-1} \sum_{i=1}^{n}(x_{i}-\mu)^{2}-\frac{n}{n-1}(\bar{x}-\mu)^{2} \\ \text{E}\left[\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right] &= \text{E}\left[\frac{1}{n-1} \sum_{i=1}^{n}(x_{i}-\mu)^{2}-\frac{n}{n-1}(\bar{x}-\mu)^{2}\right] \\ &=\frac{n}{n-1}\text{D}x-\frac{n}{n-1}\cdot\frac{\text{D}x}{n}=\text{D}x \end{aligned} n11i=1n(xixˉ)2E[n11i=1n(xixˉ)2]=n11i=1n[(xiμ)(xˉμ)]2=n11i=1n(xiμ)2n12i=1n(xiμ)(xˉμ)+n11i=1n(xˉμ)2=n11i=1n(xiμ)2n12(xˉμ)(nxˉnμ)+n1n(xˉμ)2=n11i=1n(xiμ)2n1n(xˉμ)2=E[n11i=1n(xiμ)2n1n(xˉμ)2]=n1nDxn1nnDx=Dx

n维正态随机变量

二维正态随机变量 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的概率密度为
f ( x 1 , x 2 ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x 1 − μ 1 ) 2 σ 1 2 − 2 ρ ( x 1 − μ 1 ) ( x 2 − μ 2 ) σ 1 σ 2 + ( x 2 − μ 2 ) 2 σ 2 2 ] } = 1 2 π det 1 / 2 C exp ⁡ { − 1 2 [ x 1 − μ 1 x 2 − μ 2 ] ⊤ C − 1 [ x 1 − μ 1 x 2 − μ 2 ] } \begin{aligned} f(x_1,x_2)=& \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{\frac{-1}{2(1-\rho^{2})}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} -2 \rho \frac{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} \\ =& \frac{1}{2\pi\text{det}^{1/2}\mathbf{C}}\exp\left\{-\frac{1}{2} \left[\begin{matrix} x_1-\mu_1 \\ x_2-\mu_2 \end{matrix}\right]^\top\mathbf{C}^{-1}\left[\begin{matrix} x_1-\mu_1 \\ x_2-\mu_2 \end{matrix}\right]\right\} \end{aligned} f(x1,x2)==2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(x1μ1)22ρσ1σ2(x1μ1)(x2μ2)+σ22(x2μ2)2]}2πdet1/2C1exp{21[x1μ1x2μ2]C1[x1μ1x2μ2]}
其中的协方差矩阵 C \mathbf{C} C
C = [ σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ] = [ D X 1 Cov ( X 1 , X 2 ) Cov ( X 1 , X 2 ) D X 2 ] \mathbf{C}=\left[\begin{matrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \\ \end{matrix}\right] =\left[\begin{matrix} \text{D}X_1 & \text{Cov}(X_1,X_2) \\ \text{Cov}(X_1,X_2) & \text{D}X_2 \\ \end{matrix}\right] C=[σ12ρσ1σ2ρσ1σ2σ22]=[DX1Cov(X1,X2)Cov(X1,X2)DX2]
n维正态随机变量的概率密度为
f ( x ) = 1 ( 2 π ) n / 2 det 1 / 2 C exp ⁡ { − 1 2 ( x − μ ) ⊤ C − 1 ( x − μ ) } f(\boldsymbol{x})=\frac{1}{(2 \pi)^{n/2}\text{det}^{1/2}\mathbf{C}}\exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\mathbf{C}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\} f(x)=(2π)n/2det1/2C1exp{21(xμ)C1(xμ)}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值