万有引力的几个结论证明

均匀球体对球体外物体的万有引力等效于位于球心处的质点

cos ⁡ α = D − z x 2 + y 2 + ( D − z ) 2 = D − r cos ⁡ ϕ r 2 sin ⁡ 2 ϕ cos ⁡ 2 θ + r 2 sin ⁡ 2 ϕ sin ⁡ 2 θ + D 2 − 2 r D cos ⁡ ϕ + r 2 cos ⁡ 2 ϕ = D − r cos ⁡ ϕ r 2 + D 2 − 2 r D cos ⁡ ϕ \begin{aligned} \cos\alpha &= \frac{D-z}{\sqrt{x^2+y^2+(D-z)^2}} \\ &= \frac{D-r\cos\phi}{\sqrt{r^2\sin^2\phi\cos^2\theta +r^2\sin^2\phi\sin^2\theta+D^2-2rD\cos\phi+r^2\cos^2\phi}} \\ &= \frac{D-r\cos\phi}{\sqrt{r^2+D^2-2rD\cos\phi}} \end{aligned} cosα=x2+y2+(Dz)2 Dz=r2sin2ϕcos2θ+r2sin2ϕsin2θ+D22rDcosϕ+r2cos2ϕ Drcosϕ=r2+D22rDcosϕ Drcosϕ
F = ∭ G m ρ d V x 2 + y 2 + ( D − z ) 2 cos ⁡ α = G m ρ ∭ r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d V \begin{aligned} F &= \iiint\frac{Gm\rho\text{d}V}{x^2+y^2+(D-z)^2}\cos\alpha \\ &= Gm\rho\iiint\frac{r^2\sin\phi(D-r\cos\phi)} {(r^2+D^2-2rD\cos\phi)^{\frac{3}{2}}}\text{d}V \end{aligned} F=x2+y2+(Dz)2GmρdVcosα=Gmρ(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)dV

A ( ϕ ) = r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) B ( ϕ ) = r 2 + D 2 − 2 r D cos ⁡ ϕ \begin{aligned} A(\phi) &= r^2\sin\phi(D-r\cos\phi) \\ B(\phi) &= r^2+D^2-2rD\cos\phi \end{aligned} A(ϕ)B(ϕ)=r2sinϕ(Drcosϕ)=r2+D22rDcosϕ

d B ( ϕ ) d ϕ = 2 r D sin ⁡ ϕ A ( ϕ ) = r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) = r ( D − r cos ⁡ ϕ ) 2 D d B ( ϕ ) d ϕ = r ( B ( ϕ ) + D 2 − r 2 ) 4 D 2 d B ( ϕ ) d ϕ \begin{aligned} \frac{\text{d}B(\phi)}{\text{d}\phi} &= 2rD\sin\phi \\ A(\phi) &= r^2\sin\phi(D-r\cos\phi) \\ &= \frac{r(D-r\cos\phi)}{2D}\frac{\text{d}B(\phi)}{\text{d}\phi} \\ &= \frac{r(B(\phi)+D^2-r^2)}{4D^2}\frac{\text{d}B(\phi)}{\text{d}\phi} \\ \end{aligned} dϕdB(ϕ)A(ϕ)=2rDsinϕ=r2sinϕ(Drcosϕ)=2Dr(Drcosϕ)dϕdB(ϕ)=4D2r(B(ϕ)+D2r2)dϕdB(ϕ)
于是
∫ B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) = − 2 ∫ ( B ( ϕ ) + D 2 − r 2 ) d B − 1 2 ( ϕ ) = − 2 [ B ( ϕ ) + D 2 − r 2 B ( ϕ ) ] + 2 ∫ B − 1 2 ( ϕ ) d B ( ϕ ) = − 2 [ B ( ϕ ) + D 2 − r 2 B ( ϕ ) ] + 4 B ( ϕ ) = 2 B ( ϕ ) − 2 D 2 − r 2 B ( ϕ ) \begin{aligned} & \int\frac{B(\phi)+D^2-r^2}{B^{\frac{3}{2}}(\phi)}\text{d}B(\phi) \\ =& -2\int(B(\phi)+D^2-r^2)\text{d}B^{-\frac{1}{2}}(\phi) \\ =& -2\left[\sqrt{B(\phi)}+\frac{D^2-r^2}{\sqrt{B(\phi)}}\right] +2\int B^{-\frac{1}{2}}(\phi)\text{d}B(\phi) \\ =& -2\left[\sqrt{B(\phi)}+\frac{D^2-r^2}{\sqrt{B(\phi)}}\right]+4\sqrt{B(\phi)} \\ =& 2\sqrt{B(\phi)}-2\frac{D^2-r^2}{\sqrt{B(\phi)}} \\ \end{aligned} ====B23(ϕ)B(ϕ)+D2r2dB(ϕ)2(B(ϕ)+D2r2)dB21(ϕ)2[B(ϕ) +B(ϕ) D2r2]+2B21(ϕ)dB(ϕ)2[B(ϕ) +B(ϕ) D2r2]+4B(ϕ) 2B(ϕ) 2B(ϕ) D2r2
加入上下限
B ( 0 ) = r 2 + D 2 − 2 r D = D − r B ( π ) = r 2 + D 2 + 2 r D = D + r ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) = 2 [ B ( ϕ ) − D 2 − r 2 B ( ϕ ) ] 0 π = 2 [ ( D + r ) − ( D − r ) ] − 2 [ ( D − r ) − ( D + r ) ] = 8 r \begin{aligned} \sqrt{B(0)} =& \sqrt{r^2+D^2-2rD}=D-r \\ \sqrt{B(\pi)} =& \sqrt{r^2+D^2+2rD}=D+r \\ \int_0^{\pi}\frac{B(\phi)+D^2-r^2}{B^{\frac{3}{2}}(\phi)}\text{d}B(\phi) =& 2\left[\sqrt{B(\phi)}-\frac{D^2-r^2}{\sqrt{B(\phi)}}\right]_0^{\pi} \\ =& 2[(D+r)-(D-r)]-2[(D-r)-(D+r)] \\ =& 8r \end{aligned} B(0) =B(π) =0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)===r2+D22rD =Drr2+D2+2rD =D+r2[B(ϕ) B(ϕ) D2r2]0π2[(D+r)(Dr)]2[(Dr)(D+r)]8r
代入 F F F
F = G m ρ ∭ r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d V = G m ρ ∫ 0 2 π ∫ 0 π ∫ 0 R r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d r d ϕ d θ = 2 π G m ρ ∫ 0 π ∫ 0 R r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d r d ϕ = 2 π G m ρ ∫ 0 R ∫ 0 π ∫ A ( ϕ ) B 3 2 ( ϕ ) d ϕ d r = 2 π G m ρ ∫ 0 R ∫ 0 π r ( B ( ϕ ) + D 2 − r 2 ) 4 D 2 B 3 2 ( ϕ ) d B ( ϕ ) d r = π G m ρ r 2 D 2 ∫ 0 R r ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) d r = π G m ρ 2 D 2 ∫ 0 R 8 r 2 d r = 4 π G m ρ D 2 R 3 3 = 4 π G m R 3 3 D 2 M 4 3 π R 3 = G M m D 2 \begin{aligned} F =& Gm\rho\iiint\frac{r^2\sin\phi(D-r\cos\phi)} {(r^2+D^2-2rD\cos\phi)^{\frac{3}{2}}}\text{d}V \\ =& Gm\rho\int_0^{2\pi}\int_0^{\pi}\int_0^{R}\frac{r^2\sin\phi(D-r\cos\phi)} {(r^2+D^2-2rD\cos\phi)^{\frac{3}{2}}}\text{d}r\text{d}\phi\text{d}\theta \\ =& 2\pi Gm\rho\int_0^{\pi}\int_0^{R}\frac{r^2\sin\phi(D-r\cos\phi)} {(r^2+D^2-2rD\cos\phi)^{\frac{3}{2}}}\text{d}r\text{d}\phi \\ =& 2\pi Gm\rho\int_0^{R}\int_0^{\pi}\int\frac{A(\phi)} {B^{\frac{3}{2}}(\phi)}\text{d}\phi\text{d}r \\ =& 2\pi Gm\rho\int_0^{R}\int_0^{\pi}\frac{r(B(\phi)+D^2-r^2)} {4D^2B^{\frac{3}{2}}(\phi)}\text{d}B(\phi)\text{d}r \\ =& \frac{\pi Gm\rho r}{2D^2}\int_0^{R}r\int_0^{\pi}\frac{B(\phi)+D^2-r^2} {B^{\frac{3}{2}}(\phi)}\text{d}B(\phi)\text{d}r \\ =& \frac{\pi Gm\rho}{2D^2}\int_0^{R}8r^2\text{d}r \\ =& \frac{4\pi Gm\rho}{D^2}\frac{R^3}{3} \\ =& \frac{4\pi GmR^3}{3D^2}\frac{M}{\frac{4}{3}\pi R^3} \\ =& \frac{GMm}{D^2} \end{aligned} F==========Gmρ(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)dVGmρ02π0π0R(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)drdϕdθ2πGmρ0π0R(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)drdϕ2πGmρ0R0πB23(ϕ)A(ϕ)dϕdr2πGmρ0R0π4D2B23(ϕ)r(B(ϕ)+D2r2)dB(ϕ)dr2D2πGmρr0Rr0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)dr2D2πGmρ0R8r2drD24πGmρ3R33D24πGmR334πR3MD2GMm

均匀球壳对球壳内任意一点的万有引力合力为0

积分
∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) \int_0^{\pi}\frac{B(\phi)+D^2-r^2}{B^{\frac{3}{2}}(\phi)}\text{d}B(\phi) 0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)
中,由于 D ≤ r D\le r Dr,所以 B ( 0 ) = r 2 + D 2 − 2 r D = r − D \sqrt{B(0)}=\sqrt{r^2+D^2-2rD}=r-D B(0) =r2+D22rD =rD,此时
∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) = 2 [ B ( ϕ ) − D 2 − r 2 B ( ϕ ) ] 0 π = 2 [ ( D + r ) − ( D − r ) ] − 2 [ ( r − D ) + ( r + D ) ] = 0 \begin{aligned} \int_0^{\pi}\frac{B(\phi)+D^2-r^2}{B^{\frac{3}{2}}(\phi)}\text{d}B(\phi) =& 2\left[\sqrt{B(\phi)}-\frac{D^2-r^2}{\sqrt{B(\phi)}}\right]_0^{\pi} \\ =& 2[(D+r)-(D-r)]-2[(r-D)+(r+D)] \\ =& 0 \end{aligned} 0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)===2[B(ϕ) B(ϕ) D2r2]0π2[(D+r)(Dr)]2[(rD)+(r+D)]0
代入 F F F
F = G m ρ ∫ 0 2 π ∫ 0 π ∫ R 1 R 2 r 2 sin ⁡ ϕ ( D − r cos ⁡ ϕ ) ( r 2 + D 2 − 2 r D cos ⁡ ϕ ) 3 2 d r d ϕ d θ = π G m ρ r 2 D 2 ∫ R 1 R 2 r ∫ 0 π B ( ϕ ) + D 2 − r 2 B 3 2 ( ϕ ) d B ( ϕ ) d r = 0 \begin{aligned} F =& Gm\rho\int_0^{2\pi}\int_0^{\pi}\int_{R_1}^{R_2}\frac{r^2\sin\phi(D-r\cos\phi)} {(r^2+D^2-2rD\cos\phi)^{\frac{3}{2}}}\text{d}r\text{d}\phi\text{d}\theta \\ =& \frac{\pi Gm\rho r}{2D^2}\int_{R_1}^{R_2}r\int_0^{\pi}\frac{B(\phi)+D^2-r^2} {B^{\frac{3}{2}}(\phi)}\text{d}B(\phi)\text{d}r \\ =& 0 \end{aligned} F===Gmρ02π0πR1R2(r2+D22rDcosϕ)23r2sinϕ(Drcosϕ)drdϕdθ2D2πGmρrR1R2r0πB23(ϕ)B(ϕ)+D2r2dB(ϕ)dr0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值