SOM背景介绍
SOM是一种自组织(竞争型)神经网络,其认为:一个神经网络接受外界输入模式时,将会分为不同的对应区域,各区域对输入模式具有不同的响应特征,而且这个过程是自动完成的。SOM 网络正是根据这一看法提 出来的,通过不断的发展,现已被广泛应用于语音识别、图像 处理、分类聚类、组合优化 (如 TSP 问题)、数据分析和预测等 众多信息处理领域。
SOM网络结构
SOM网络由两个层次组成,即输入层和输出层(竞争层)。 输入层接受样本输入,节点数和样本维数一样;输出层上,神经元之间相互竞争,通过修改神经元之间的连接权重,使得若干神经元活跃,并最终得出获胜结点。神经元的排列有多种形式,有输出层按一维阵列组织的SOM网,其结构最为简单; 有输出层按二维平面组织的 SOM 网,是最典型的组织方式, 其每个神经元同它周围的其它神经元侧向连接,并标以权重。
分类与聚类
分类是在类别知识等导师信号的指导下,将待识别的输入模式分配到各自的模式类中,
聚类是

SOM(自组织映射)是一种自组织神经网络,常用于分类、聚类和数据分析。网络结构包括输入层和输出层,输出层神经元通过竞争学习调整权重。算法基于竞争学习原理,通过学习率和优胜邻域动态调整,最终形成对输入模式的映射。SOM在语音识别、图像处理等领域有广泛应用。
最低0.47元/天 解锁文章
2635

被折叠的 条评论
为什么被折叠?



