设
α
、
β
(
1
<
α
<
β
)
\alpha 、\beta (1<\alpha<\beta)
α、β(1<α<β) 为实数.求具有下述性质的最大正整数
r
r
r :将每个正整数任意染上
r
r
r 种颜色之一,则总存在两个同色的正整数
x
、
y
x、y
x、y ,满足
α
≤
x
y
≤
β
\alpha\leq\frac xy\leq\beta
α≤yx≤β.
【分析】
假设存在满足题设的正整数
r
r
r.
若存在正整数
N
0
N_0
N0 ,使得对所有
n
>
N
0
n>N_0
n>N0 的正整数
n
n
n,均为同一种颜色, 则结论显然成立. 否则存在正整数
t
>
N
0
t>N_0
t>N0 ,使得
t
t
t 和
t
+
1
t+1
t+1 不同色.
\qquad
考虑
r
+
1
r+1
r+1 个正整数
a
0
=
t
,
a
1
=
t
+
1
,
\qquad a_0=t,a_1=t+1,
a0=t,a1=t+1,
a
i
+
1
=
⌈
α
a
i
⌉
(
i
=
1
,
2
,
⋯
 
,
r
−
1
)
.
\qquad a_{i+1}=\lceil\alpha a_i\rceil(i=1,2,\cdots,r-1).
ai+1=⌈αai⌉(i=1,2,⋯,r−1).
则
a
i
+
1
<
α
a
i
+
1
(
i
=
1
,
2
,
⋯
 
,
r
−
1
)
\qquad则 a_{i+1}<\alpha a_i+1(i=1,2,\cdots,r-1)
则ai+1<αai+1(i=1,2,⋯,r−1)
⇒
a
r
<
α
a
r
−
1
+
1
<
α
(
α
a
r
−
2
+
1
)
+
1
\qquad\Rightarrow a_r<\alpha a_{r-1}+1<\alpha(\alpha a_{r-2}+1)+1
⇒ar<αar−1+1<α(αar−2+1)+1
=
α
2
a
r
−
2
+
α
+
1
<
⋯
\qquad=\alpha^2a_{r-2}+\alpha+1<\cdots
=α2ar−2+α+1<⋯
<
α
r
−
1
a
1
+
α
r
−
1
+
⋯
+
α
+
1
\qquad<\alpha^{r-1}a_1+\alpha^{r-1}+\cdots+\alpha+1
<αr−1a1+αr−1+⋯+α+1
=
α
r
−
1
(
a
0
+
1
)
+
∑
k
=
1
r
−
2
α
k
\qquad=\alpha^{r-1}(a_0+1)+\sum\limits_{k=1}^{r-2}\alpha^k
=αr−1(a0+1)+k=1∑r−2αk
=
α
r
−
1
a
0
+
∑
k
=
0
r
−
1
α
k
\qquad=\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k
=αr−1a0+k=0∑r−1αk
⇒
a
r
<
α
r
−
1
a
0
+
∑
k
=
0
r
−
1
α
k
\Rightarrow a_r<\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k
⇒ar<αr−1a0+k=0∑r−1αk
令
α
r
−
1
a
0
+
∑
k
=
0
r
−
1
α
k
<
β
a
0
.
\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k<\beta a_0.
αr−1a0+k=0∑r−1αk<βa0.
于是,
(
β
−
α
r
−
1
)
a
0
>
∑
k
=
0
r
−
1
α
k
.
(\beta-\alpha^{r-1})a_0>\sum\limits_{k=0}^{r-1}\alpha^k.
(β−αr−1)a0>k=0∑r−1αk.
故当
β
−
α
r
−
1
>
0
⇔
1
+
log
a
β
>
r
,
\beta-\alpha^{r-1}>0\Leftrightarrow1+\log_a\beta>r,
β−αr−1>0⇔1+logaβ>r,
即
r
m
a
x
=
⌈
log
α
β
⌉
r_{max}=\lceil\log_{\alpha}\beta\rceil
rmax=⌈logαβ⌉ 时,
a
0
>
1
β
−
α
r
−
1
∑
k
=
0
r
−
1
α
k
\qquad a_0>\frac1{\beta-\alpha^{r-1}}\sum\limits_{k=0}^{r-1}\alpha^k
a0>β−αr−11k=0∑r−1αk
\qquad
取上诉正整数
N
0
N_0
N0 充分大,使得
n
>
N
0
n>N_0
n>N0 时,有
n
>
1
β
−
α
r
−
1
∑
k
=
0
r
−
1
α
k
\qquad n>\frac1{\beta-\alpha^{r-1}}\sum\limits_{k=0}^{r-1}\alpha^k
n>β−αr−11k=0∑r−1αk
\qquad
则
a
r
<
α
r
−
1
a
0
+
∑
k
=
0
r
−
1
α
k
<
β
a
0
.
a_r<\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k<\beta a_0.
ar<αr−1a0+k=0∑r−1αk<βa0.
\qquad
由
{
a
i
}
\{a_i\}
{ai} 递增且共有
r
+
1
r+1
r+1 个数染了
r
r
r 种颜色,知必有
0
≤
i
<
j
≤
r
0\leq i<j\leq r
0≤i<j≤r ,使得
a
i
、
a
j
a_i、a_j
ai、aj 同色,且
α
a
i
≤
a
i
+
1
≤
a
j
≤
a
r
<
β
a
0
≤
β
a
i
\qquad \alpha a_i\leq a_{i+1}\leq a_j\leq a_r<\beta a_0\leq \beta a_i
αai≤ai+1≤aj≤ar<βa0≤βai,
即
α
≤
a
j
a
i
<
β
.
\alpha\leq\frac{a_j}{a_i}<\beta.
α≤aiaj<β.
\qquad
因此,
r
=
⌈
log
α
β
⌉
r=\lceil\log_{\alpha}\beta\rceil
r=⌈logαβ⌉ 满足条件.
\qquad
下面证明:
存在染色方案将每个正整数染上 r = ⌈ log α β ⌉ + 1 r=\lceil\log_{\alpha}\beta\rceil+1 r=⌈logαβ⌉+1 种颜色之一,使得没有两个同色的数 x 、 y x、y x、y ,满足 α ≤ x y ≤ β . \alpha\leq\frac xy\leq\beta. α≤yx≤β. \qquad
\qquad
设
r
r
r 种颜色为
A
0
,
A
1
,
⋯
 
,
A
r
−
1
A_0,A_1,\cdots,A_{r-1}
A0,A1,⋯,Ar−1,将正整数
n
n
n 染为
A
i
A_i
Ai 色当且仅当
⌊
log
α
n
⌋
≡
i
(
m
o
d
r
)
.
\lfloor\log_{\alpha}n\rfloor\equiv i\pmod r.
⌊logαn⌋≡i(modr).
\qquad
则这样的染法满足要求.
\qquad
因为对任意满足
α
≤
x
y
≤
β
\alpha\leq\frac xy\leq \beta
α≤yx≤β 的正整数
x
、
y
x、y
x、y 有
1
=
⌊
log
α
α
⌋
≤
⌊
log
α
x
y
⌋
\qquad 1=\lfloor\log_{\alpha}\alpha\rfloor\leq\lfloor\log_{\alpha}\frac xy\rfloor
1=⌊logαα⌋≤⌊logαyx⌋
≤
⌊
log
α
x
⌋
−
⌊
log
α
y
⌋
≤
⌈
log
α
x
y
⌉
\qquad \leq\lfloor\log_{\alpha}x\rfloor-\lfloor\log_{\alpha}y\rfloor\leq\lceil\log_{\alpha}\frac xy\rceil
≤⌊logαx⌋−⌊logαy⌋≤⌈logαyx⌉
≤
⌈
log
α
β
⌉
=
r
−
1
,
\qquad\leq\lceil\log_{\alpha}\beta\rceil=r-1,
≤⌈logαβ⌉=r−1,
\qquad
所以,
⌊
log
α
x
⌋
̸
≡
⌊
log
α
y
⌋
(
m
o
d
r
)
\lfloor\log_{\alpha}x\rfloor\not\equiv\lfloor\log_{\alpha}y\rfloor\pmod r
⌊logαx⌋̸≡⌊logαy⌋(modr),即
x
x
x 与
y
y
y 不同色.
(邹明 法少鹏)