中等数学-2015-2-利用数论知识解数学竞赛题-例1

α 、 β ( 1 &lt; α &lt; β ) \alpha 、\beta (1&lt;\alpha&lt;\beta) αβ(1<α<β) 为实数.求具有下述性质的最大正整数 r r r :将每个正整数任意染上 r r r 种颜色之一,则总存在两个同色的正整数 x 、 y x、y xy ,满足 α ≤ x y ≤ β \alpha\leq\frac xy\leq\beta αyxβ.


【分析】
假设存在满足题设的正整数 r r r.
若存在正整数 N 0 N_0 N0 ,使得对所有 n &gt; N 0 n&gt;N_0 n>N0 的正整数 n n n,均为同一种颜色, 则结论显然成立. 否则存在正整数 t &gt; N 0 t&gt;N_0 t>N0 ,使得 t t t t + 1 t+1 t+1 不同色.


\qquad 考虑 r + 1 r+1 r+1 个正整数
a 0 = t , a 1 = t + 1 , \qquad a_0=t,a_1=t+1, a0=ta1=t+1
a i + 1 = ⌈ α a i ⌉ ( i = 1 , 2 , ⋯ &ThinSpace; , r − 1 ) . \qquad a_{i+1}=\lceil\alpha a_i\rceil(i=1,2,\cdots,r-1). ai+1=αai(i=1,2,,r1).
则 a i + 1 &lt; α a i + 1 ( i = 1 , 2 , ⋯ &ThinSpace; , r − 1 ) \qquad则 a_{i+1}&lt;\alpha a_i+1(i=1,2,\cdots,r-1) ai+1<αai+1(i=1,2,,r1)
⇒ a r &lt; α a r − 1 + 1 &lt; α ( α a r − 2 + 1 ) + 1 \qquad\Rightarrow a_r&lt;\alpha a_{r-1}+1&lt;\alpha(\alpha a_{r-2}+1)+1 ar<αar1+1<α(αar2+1)+1
= α 2 a r − 2 + α + 1 &lt; ⋯ \qquad=\alpha^2a_{r-2}+\alpha+1&lt;\cdots =α2ar2+α+1<
&lt; α r − 1 a 1 + α r − 1 + ⋯ + α + 1 \qquad&lt;\alpha^{r-1}a_1+\alpha^{r-1}+\cdots+\alpha+1 <αr1a1+αr1++α+1
= α r − 1 ( a 0 + 1 ) + ∑ k = 1 r − 2 α k \qquad=\alpha^{r-1}(a_0+1)+\sum\limits_{k=1}^{r-2}\alpha^k =αr1(a0+1)+k=1r2αk
= α r − 1 a 0 + ∑ k = 0 r − 1 α k \qquad=\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k =αr1a0+k=0r1αk
⇒ a r &lt; α r − 1 a 0 + ∑ k = 0 r − 1 α k \Rightarrow a_r&lt;\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k ar<αr1a0+k=0r1αk
α r − 1 a 0 + ∑ k = 0 r − 1 α k &lt; β a 0 . \alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k&lt;\beta a_0. αr1a0+k=0r1αk<βa0.
于是, ( β − α r − 1 ) a 0 &gt; ∑ k = 0 r − 1 α k . (\beta-\alpha^{r-1})a_0&gt;\sum\limits_{k=0}^{r-1}\alpha^k. (βαr1)a0>k=0r1αk.
故当 β − α r − 1 &gt; 0 ⇔ 1 + log ⁡ a β &gt; r , \beta-\alpha^{r-1}&gt;0\Leftrightarrow1+\log_a\beta&gt;r, βαr1>01+logaβ>r,
r m a x = ⌈ log ⁡ α β ⌉ r_{max}=\lceil\log_{\alpha}\beta\rceil rmax=logαβ 时,
a 0 &gt; 1 β − α r − 1 ∑ k = 0 r − 1 α k \qquad a_0&gt;\frac1{\beta-\alpha^{r-1}}\sum\limits_{k=0}^{r-1}\alpha^k a0>βαr11k=0r1αk
\qquad 取上诉正整数 N 0 N_0 N0 充分大,使得 n &gt; N 0 n&gt;N_0 n>N0 时,有
n &gt; 1 β − α r − 1 ∑ k = 0 r − 1 α k \qquad n&gt;\frac1{\beta-\alpha^{r-1}}\sum\limits_{k=0}^{r-1}\alpha^k n>βαr11k=0r1αk
\qquad a r &lt; α r − 1 a 0 + ∑ k = 0 r − 1 α k &lt; β a 0 . a_r&lt;\alpha^{r-1}a_0+\sum\limits_{k=0}^{r-1}\alpha^k&lt;\beta a_0. ar<αr1a0+k=0r1αk<βa0.
\qquad { a i } \{a_i\} {ai} 递增且共有 r + 1 r+1 r+1 个数染了 r r r 种颜色,知必有 0 ≤ i &lt; j ≤ r 0\leq i&lt;j\leq r 0i<jr ,使得 a i 、 a j a_i、a_j aiaj 同色,且
α a i ≤ a i + 1 ≤ a j ≤ a r &lt; β a 0 ≤ β a i \qquad \alpha a_i\leq a_{i+1}\leq a_j\leq a_r&lt;\beta a_0\leq \beta a_i αaiai+1ajar<βa0βai,
α ≤ a j a i &lt; β . \alpha\leq\frac{a_j}{a_i}&lt;\beta. αaiaj<β.
\qquad 因此, r = ⌈ log ⁡ α β ⌉ r=\lceil\log_{\alpha}\beta\rceil r=logαβ 满足条件.


\qquad 下面证明:

存在染色方案将每个正整数染上 r = ⌈ log ⁡ α β ⌉ + 1 r=\lceil\log_{\alpha}\beta\rceil+1 r=logαβ+1 种颜色之一,使得没有两个同色的数 x 、 y x、y xy ,满足 α ≤ x y ≤ β . \alpha\leq\frac xy\leq\beta. αyxβ. \qquad

\qquad r r r 种颜色为 A 0 , A 1 , ⋯ &ThinSpace; , A r − 1 A_0,A_1,\cdots,A_{r-1} A0,A1,,Ar1,将正整数 n n n 染为 A i A_i Ai 色当且仅当 ⌊ log ⁡ α n ⌋ ≡ i ( m o d r ) . \lfloor\log_{\alpha}n\rfloor\equiv i\pmod r. logαni(modr).
\qquad 则这样的染法满足要求.
\qquad 因为对任意满足 α ≤ x y ≤ β \alpha\leq\frac xy\leq \beta αyxβ 的正整数 x 、 y x、y xy
1 = ⌊ log ⁡ α α ⌋ ≤ ⌊ log ⁡ α x y ⌋ \qquad 1=\lfloor\log_{\alpha}\alpha\rfloor\leq\lfloor\log_{\alpha}\frac xy\rfloor 1=logααlogαyx
≤ ⌊ log ⁡ α x ⌋ − ⌊ log ⁡ α y ⌋ ≤ ⌈ log ⁡ α x y ⌉ \qquad \leq\lfloor\log_{\alpha}x\rfloor-\lfloor\log_{\alpha}y\rfloor\leq\lceil\log_{\alpha}\frac xy\rceil logαxlogαylogαyx
≤ ⌈ log ⁡ α β ⌉ = r − 1 , \qquad\leq\lceil\log_{\alpha}\beta\rceil=r-1, logαβ=r1,
\qquad 所以, ⌊ log ⁡ α x ⌋ ̸ ≡ ⌊ log ⁡ α y ⌋ ( m o d r ) \lfloor\log_{\alpha}x\rfloor\not\equiv\lfloor\log_{\alpha}y\rfloor\pmod r logαx̸logαy(modr),即 x x x y y y 不同色.


(邹明 法少鹏)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值