2012,土耳其国家队选拔考试

已知正实数 a 、 b 、 c a、b、c abc 满足 a b + b c + c a ≤ 1 ab+bc+ca\leq1 ab+bc+ca1. 证明:

a + b + c + 3 ≥ 8 a b c ( 1 a 2 + 1 ) ( 1 b 2 + 1 ) ( 1 c 2 + 1 ) . a+b+c+\sqrt3\geq8abc(\frac1{a^2+1})(\frac1{b^2+1})(\frac1{c^2+1}). a+b+c+3 8abc(a2+11)(b2+11)(c2+11).

\qquad 证明 \qquad 由均值不等式得

\qquad a 2 + 1 ≥ a 2 + a b + b c + c a ≥ 4 a 2 ⋅ a b ⋅ b c ⋅ c a 4 = 4 a b c . a^2+1\geq a^2+ab+bc+ca\geq4\sqrt[4]{a^2\cdot ab\cdot bc\cdot ca}=4a\sqrt{bc}. a2+1a2+ab+bc+ca44a2abbcca =4abc .

\qquad 于是, 2 b c ≥ 8 a b c a 2 + 1 2\sqrt{bc}\geq\frac{8abc}{a^2+1} 2bc a2+18abc

\qquad 同理, 2 c a ≥ 8 a b c b 2 + 1 , 2 a b ≥ 8 a b c c 2 + 1 2\sqrt{ca}\geq\frac{8abc}{b^2+1},2\sqrt{ab}\geq\frac{8abc}{c^2+1} 2ca b2+18abc,2ab c2+18abc

\qquad 只需证: a + b + c + 3 ≥ 2 ( b c + c a + a b ) . a+b+c+\sqrt3\geq2(\sqrt{bc}+\sqrt{ca}+\sqrt{ab}). a+b+c+3 2(bc +ca +ab ).

\qquad 由柯西不等式知

\qquad 3 ≥ 1 + 1 + 1 ⋅ a b + b c + c a ≥ a b + b c + c a \sqrt3\geq\sqrt{1+1+1}\cdot\sqrt{ab+bc+ca}\geq\sqrt{ab}+\sqrt{bc}+\sqrt{ca} 3 1+1+1 ab+bc+ca ab +bc +ca

\qquad a + b + c ≥ a b + b c + c a a+b+c\geq\sqrt{ab}+\sqrt{bc}+\sqrt{ca} a+b+cab +bc +ca

⇔ ( a − b ) 2 + ( b − c ) 2 + ( c − a ) 2 ≥ 0. \Leftrightarrow(\sqrt a-\sqrt b)^2+(\sqrt b-\sqrt c)^2+(\sqrt c-\sqrt a)^2\geq0. (a b )2+(b c )2+(c a )20.

\qquad 从而,所证不等式成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值