2011,第 19届土耳其数学奥林匹克

\qquad 若正实数 x 、 y 、 z x、y、z xyz 满足 x y z = 1 xyz=1 xyz=1, 证明:

1 x + y 20 + z 11 + 1 y + z 20 + x 11 + 1 z + x 20 + y 11 ≤ 1. \frac1{x+y^{20}+z^{11}}+\frac1{y+z^{20}+x^{11}}+\frac1{z+x^{20}+y^{11}}\leq1. x+y20+z111+y+z20+x111+z+x20+y1111.

\qquad 证明 \qquad 由柯西不等式得 1 a + b 20 + c 11 ≤ a 13 + b − 6 + c 3 ( a 7 + b 7 + c 7 ) 2 ( a 、 b 、 c ∈ R + ) . \frac1{a+b^{20}+c^{11}}\leq\frac{a^{13}+b^{-6}+c^3}{(a^7+b^7+c^7)^2} (a、b、c\in\R^+). a+b20+c111(a7+b7+c7)2a13+b6+c3(abcR+).

\qquad ( a , b , c ) = ( x , y , z ) , ( y , z , x ) , ( z , x , y ) (a,b,c)=(x,y,z),(y,z,x),(z,x,y) (a,b,c)=(x,y,z),(y,z,x),(z,x,y) 时,求和得

\qquad 1 x + y 20 + z 11 + 1 y + z 20 + x 11 + 1 z + x 20 + y 11 \frac1{x+y^{20}+z^{11}}+\frac1{y+z^{20}+x^{11}}+\frac1{z+x^{20}+y^{11}} x+y20+z111+y+z20+x111+z+x20+y111

\qquad ≤ x 13 + y − 6 + z 3 ( x 7 + y 7 + z 7 ) 2 + y 13 + z − 6 + x 3 ( x 7 + y 7 + z 7 ) 2 + z 13 + x − 6 + y 3 ( x 7 + y 7 + z 7 ) 2 . \leq\frac{x^{13}+y^{-6}+z^3}{(x^7+y^7+z^7)^2}+\frac{y^{13}+z^{-6}+x^3}{(x^7+y^7+z^7)^2}+\frac{z^{13}+x^{-6}+y^3}{(x^7+y^7+z^7)^2}. (x7+y7+z7)2x13+y6+z3+(x7+y7+z7)2y13+z6+x3+(x7+y7+z7)2z13+x6+y3.

\qquad 因此,只需证

\qquad x 13 + y 13 + z 13 + x − 6 + y − 6 + z − 6 + x 3 + y 3 + z 3 x^{13}+y^{13}+z^{13}+x^{-6}+y^{-6}+z^{-6}+x^3+y^3+z^3 x13+y13+z13+x6+y6+z6+x3+y3+z3

\qquad ≤ x 14 + y 14 + z 14 + 2 ( x 7 y 7 + y 7 z 7 + z 7 x 7 ) . \leq x^{14}+y^{14}+z^{14}+2(x^7y^7+y^7z^7+z^7x^7). x14+y14+z14+2(x7y7+y7z7+z7x7).

\qquad 因为 x y z = 1 xyz=1 xyz=1, 所以,

\qquad x 13 + y 13 + z 13 = ∑ x 13 1 3 y 1 3 z 1 3 , x^{13}+y^{13}+z^{13}=\sum x^{13\frac13}y^{\frac13}z^{\frac13}, x13+y13+z13=x1331y31z31,

\qquad x − 6 + y − 6 + z − 6 = ∑ x 6 2 3 y 6 2 3 z 2 3 x^{-6}+y^{-6}+z^{-6}=\sum x^{6\frac23}y^{6\frac23}z^{\frac23} x6+y6+z6=x632y632z32

\qquad x 3 + y 3 + z 3 = ∑ x 6 2 3 y 3 2 3 z 3 2 3 . x^3+y^3+z^3=\sum x^{6\frac23}y^{3\frac23}z^{3\frac23}. x3+y3+z3=x632y332z332.

\qquad ( 13 1 3 , 1 3 , 1 3 ) &lt; ( 14 , 0 , 0 ) , ( 6 2 3 , 6 2 3 , 2 3 ) &lt; ( 7 , 7 , 0 ) , ( 6 2 3 , 3 2 3 , 3 2 3 ) &lt; ( 7 , 7 , 0 ) (13\frac13,\frac13,\frac13)&lt;(14,0,0),(6\frac23,6\frac23,\frac23)&lt;(7,7,0),(6\frac23,3\frac23,3\frac23)&lt;(7,7,0) (1331,31,31)<(14,0,0),(632,632,32)<(7,7,0),(632,332,332)<(7,7,0)

\qquad M u i r h e a d \rm {Muirhead} Muirhead 不等式得

\qquad ∑ x 13 1 3 y 1 3 z 1 3 ≤ ∑ x 14 y 0 z 0 \sum x^{13\frac13}y^{\frac13}z^{\frac13}\leq\sum x^{14}y^0z^0 x1331y31z31x14y0z0

\qquad ∑ x 6 2 3 y 6 2 3 z 2 3 ≤ ∑ x 7 y 7 z 0 \sum x^{6\frac23}y^{6\frac23}z^{\frac23}\leq\sum x^7y^7z^0 x632y632z32x7y7z0

\qquad ∑ x 6 2 3 y 3 2 3 z 3 2 3 ≤ ∑ x 7 y 7 z 0 \sum x^{6\frac23}y^{3\frac23}z^{3\frac23}\leq\sum x^7y^7z^0 x632y332z332x7y7z0


[注] M u i r h e a d \rm {Muirhead} Muirhead 不等式见 1965 年科学出版社出版的 G . H ⋅ \rm{G.H}\cdot G.H哈代, J . E ⋅ \rm{J.E}\cdot J.E李特伍德, G ⋅ \rm {G}\cdot G波利亚著,越民义译《不等式》一书第 46 页.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值