《Pointer Networks》

《Pointer Networks》一文介绍了Google Brain和UC Berkeley研究人员提出的指针网络,这是一种改进的编码器-解码器结构,用于解决组合优化问题。文章通过与传统seq2seq模型对比,展示了指针网络如何通过注意力机制产生指向输入序列元素的指针,而非生成序列。实验结果显示,指针网络在凸包问题、德劳内三角形问题和旅行商问题上表现优越,特别是在处理不同长度序列预测时,优于LSTM和带有注意力机制的模型。
摘要由CSDN通过智能技术生成

这周读的是《Pointer Networks》这篇文章。作者是Google brain和UC Berkeley的研究人员,作者在本文中通过对编码器-解码器机制和注意力机制进行改进,提出了新的网络结构pointer network,并将其运用到解决组合最优化问题。下图为seq2seq模型与指针网络的对比:

可以看出传统的seq2seq模型最终产生的是一个序列,且序列中包含的元素个数与输入序列中的元素个数相同;指针网络则是产生了一个指针,通过解码器之后通过计算对应的注意力系数产生到输入序列对应元素的指针。

作者的改进是通过对注意力机制进行改进实现的,传统的注意力机制是通过计算解码器中的隐层向量同编码器各个阶段输出的隐层向量的相关性,加权之后作为额外信息输入到解码器,起到软对齐的作用,来提高模型的性能。其计算过程如下:

改进之后的注意力机制则是将第二三步省略直接通过对向量u进行softmax得到系数最大相关向量,由此产生指针。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>