pytorch 判断并替换 nan

判断是否有 nan

torch.any(torch.isnan(a))

利用 torch.where() 函数替换所有 nan

where() 函数有三个输入值,第一个是判断条件,第二个是符合条件的设置值,第三个是不符合条件的设置值。

a = torch.Tensor([[1, 2, np.nan], [2, np.nan, 4], [3, 4, 5]])

a = torch.where(torch.isnan(a), torch.full_like(a, 0), a)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值