pytorch处理inf和nan数值

本文介绍如何在PyTorch中处理出现的Inf和NaN值,通过使用torch.where函数,可以有效地将这些异常值替换为指定值,如0或1。文章提供了具体的代码示例,展示了如何首先将NaN值替换为0,然后进一步将Inf值替换为1的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

在构建网络框架后,运行代码,发现很多tensor出现了inf值或者nan,在很多博客上没有找到对应的解决方法,大部分是基于numpy写的,比较麻烦。下面基于torch BIF函数实现替换这2个值。

a = torch.Tensor([[1, 2, np.nan], [np.inf, np.nan, 4], [3, 4, 5]])

a
Out[158]: 
tensor([[1., 2., nan],
        [inf, nan, 4.],
        [3., 4., 5.]])

下面把nan值还为0:

a = torch.where(torch.isnan(a), torch.full_like(a, 0), a)

a
Out[160]: 
tensor([[1., 2., 0.],
        [inf, 0., 4.],
        [3., 4., 5.]])

接着把inf替换为1:

a = torch.where(torch.isinf(a), torch.full_like(a, 0), a)

a
Out[162]: 
tensor([[1., 2., 0.],
        [0., 0., 4.],
        [3., 4., 5.]])

简单回顾

tips:对于某些tensor,可能已经开启了grad功能,需要把它先转为普通tensor(使用.data)

torch.where(condition,T,F) 函数有三个输入值,

    第一个是判断条件,

    第二个是符合条件的设置值,

   第三个是不符合条件的设置值

torch.full_like(input, fill_value, …) 返回与input相同size,单位值为fill_value的矩阵

#如下面这个例子,a为3*3的tensor
b =torch.full_like(a, 0,)

b
Out[165]: 
tensor([[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]])
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值