将pytorch中变量的梯度为 nan 的替换成 1 还是 0?

本文介绍了如何在PyTorch中使用xtensor创建张量,执行基本运算,如乘法和立方,并演示了如何应用梯度替换技巧来控制优化过程。作者展示了如何使用Adam优化器对张量进行学习并观察梯度替换对模型更新的影响。
摘要由CSDN通过智能技术生成

替换成0,则变量保持不动

0: xtensor([1.0000, 2.0000, 3.0000, 4.5000], device='cuda:0', requires_grad=True)
0: xtensor([1.0000, 2.0000, 3.0000, 4.5000], device='cuda:0', requires_grad=True)

替换成1,变量会变化

0: xtensor([1.0000, 2.0000, 3.0000, 4.5000], device='cuda:0', requires_grad=True)
0: xtensor([1.0000, 2.0000, 3.0000, 4.5000], device='cuda:0', requires_grad=True)

代码如下:

import torch
import numpy as np
import torch.optim as optim

torch.autograd.set_detect_anomaly(True)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.tensor([1.0, 2.0, 3.0,4.5], dtype=torch.float32, requires_grad=True, device=device)

y1 = x*2
y2 = x**3
print(f'x{x}')
print(f'y1{y1}')
print(f'y2{y2}')

optimizer = optim.Adam([x], lr=1)

def replace_gradients_zero(grad):  
    return torch.where(torch.ones_like(grad, dtype=torch.bool), torch.zeros_like(grad), grad)  

def replace_gradients_one(grad):  
    return torch.where(torch.ones_like(grad, dtype=torch.bool), torch.ones_like(grad), grad)  

for i in range(1):
    print(f'{i}: x{x}')
    optimizer.zero_grad()
    loss = (y1-y2).sum()

    for param in [x]:  
        param.register_hook(replace_gradients_zero) 

    loss.backward()
    optimizer.step()
    print(f'{i}: x{x}')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值