文章目录
题

8.1

8.2 待补
8.3 待补
8.4
P190介绍了AdaBoost实质上是基于加性模型以类似于牛顿迭代法来优化指数损失函数。。受此启发,通过讲迭代优化过程替换为其他优化方法,产生了GradientBoosting等变体算法。
8.5 待补
8.6
8.6.1 偏差与方差解释:https://www.zhihu.com/question/20448464
Bagging主要是降低分类器的方差,而朴素贝叶斯分类器没有方差可以减小。对全训练样本生成的朴素贝叶斯分类器是最优的分类器,不能用随机抽样来提高泛化性能。
8.7
P181因为在个体决策树的构建过程中,Bagging使用的是“确定型”决策树,即在选择划分属性时要对结点的所有属性进行考察,而随机森林使用的“随机型”决策树只需考察一个属性子集。
8.8 待补
8.9 待补
8.10
采用Bagging训练多个多个分类器,最后采用相对多数投票法得出结果。
1507

被折叠的 条评论
为什么被折叠?



