workers_per_gpu和num_workers参数是一个意思吗?

不是

workers_per_gpunum_workers是不同的参数,它们有各自的用途。

  1. num_workers

    • 这是 PyTorch DataLoader 的一个参数,用于控制数据加载的并行度。
    • 它表示使用多少个工作进程(worker)来并行加载数据。
    • 通常情况下,将 num_workers 设置为 CPU 核心数可以获得最佳性能。
  2. workers_per_gpu

    • 这是一个自定义的参数,并不是 PyTorch DataLoader 的标准参数。
    • 它表示在多卡GPU环境下,每个GPU使用多少个工作进程来加载数据。
    • 这个参数主要用于在多GPU环境下,平衡每个GPU的数据加载工作负载。

简单来说:

  • num_workers控制整个数据加载过程中使用的并行进程数量。
  • workers_per_gpu控制在多GPU环境下,每个GPU使用的并行进程数量。

它们可以配合使用来实现更加高效的数据加载。例如在4卡GPU环境下,可以设置 num_workers=16 和 workers_per_gpu=4,这样就可以充分利用系统资源来加速数据加载。

总之,workers_per_gpu是一个自定义参数,用于优化多GPU环境下的数据加载,而num_workers是 PyTorch 标准的参数,用于控制整体的数据加载并行度。

pyskl/pyskl/datasets/builder.py at main · kennymckormick/pyskl · GitHub

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值